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A B S T R A C T

Numerical simulation of nonlinear elastic wave propagation in solids with cracks is indispensable for decoding
the complicated mechanisms associated with the nonlinear ultrasonic techniques in Non-Destructive Testing
(NDT). Here, we introduce a two-dimensional implementation of the combined finite-discrete element method
(FDEM), which merges the finite element method (FEM) and the discrete element method (DEM), to explicitly
simulate the crack induced nonlinear elasticity in solids with both horizontal and inclined cracks. In the FDEM
model, the solid is discretized into finite elements to capture the wave propagation in the bulk material, and the
finite elements along the two sides of the crack also behave as discrete elements to track the normal and tan-
gential interactions between crack surfaces. The simulation results show that for cracked models, nonlinear
elasticity is generated only when the excitation amplitude is large enough to trigger the contact between crack
surfaces, and the nonlinear behavior is very sensitive to the crack surface contact. The simulations reveal the
influence of normal and tangential contact on the nonlinear elasticity generation. Moreover, the results de-
monstrate the capabilities of FDEM for decoding the causality of nonlinear elasticity in cracked solid and its
potential to assist in Non-Destructive Testing (NDT).

1. Introduction

Non-Destructive Testing (NDT) for detection and quantification of
defects in solids (e.g. crack, delamination, debonding, pore and inter-
granular contact) is of significant industrial and academic importance
in many areas [1–5]. Probing and imaging using ultrasonic waves is a
leading tool for such applications and there is a need for continued
development of robust ultrasonic techniques in NDT [2,3]. Among the
many ultrasonic wave applications in NDT, a major class of them em-
ploy the principles of wave reflection, transmission or scattering. While
extremely useful, these linear ultrasonic techniques are less capable of
accurately detecting contact-type defects, and are also less sensitive to
micro or closed cracks [2–4]. Since defects can behave nonlinearly
under sufficient excitation, the Nonlinear Elastic Wave Spectroscopy
(NEWS) methods have shown remarkable potential for defect detection
and characterization [2–4,6–10]. The nonlinear methods often involve
exciting a solid with an ultrasonic signal of certain frequency and
generating an output frequency spectrum consisting of harmonics and
subharmonics of the exciting frequency. These effects, often referred to
as Contact Acoustic Nonlinearity (CAN) [10], are mainly induced by
clapping and frictional contacts of the defects [2,3,11]. Because of their

high sensitivity, nonlinear ultrasonic approaches have seen an in-
creasing interest in the NDT community over the past decades
[1,2,4,9,12,13].

A large number of experimental studies have been conducted using
NEWS techniques for various types of defect detection in solid materials
such as composite plates, metals, concretes and rocks, and have de-
monstrated successes in the field of NDT [6–8,14–21]. However, to
date, the underlying microscopic mechanism of nonlinear techniques
for defect detection is still poorly understood [4]. Numerical simula-
tions, which are capable of providing detailed analyses of the nonlinear
behavior at a level of spatial and temporal resolution not accessible
experimentally, are therefore necessary for decoding the complicated
mechanism associated with the nonlinear ultrasonic techniques. In
addition to the ease of implementation, the numerical approaches are
indispensable also because they can provide dedicated comparisons of
nonlinear indicators with experimental results, and thus link measured
macroscopic events to defect internal parameters (both physical and
geometric) and in this way, a complete characterization of the defects
can be achieved [2].

Simulation of ultrasonic wave propagation in solids with defects by
considering the nonlinearity introduced by them is challenging, and has
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been the object of study for two decades [2,3]. The numerical ap-
proaches used in this regard mainly include Finite-Difference Time-
Domain (FDTD) and Finite Element Method (FEM). For example, Sarens
et al. [22] implemented a three-dimensional finite difference, staggered
grid simulation to model the contact nonlinear acoustic generation in a
composite plate containing an artificial defect; Marhenke et al. [23]
used FDTD simulations to cross-validate the simulated interference ef-
fects resulting from multiple ultrasonic reflections within the delami-
nation layers with the laboratory experiments. In general, the FDTD is
easy to implement; however, it has many restrictions, e.g. the defects in
the FDTD simulations are usually restricted to rectangular shapes [2].
As a more flexible alternative, FEM is widely used in crack-wave in-
teraction simulations. In particular, Kawashima et al. [24] used a FEM
model to study CAN in which Rayleigh waves were employed to detect
surface cracks; Blanloeuil et al. [12,25] studied the nonlinear scattering
of ultrasonic waves by closed cracks subjected to CAN; to investigate
the clapping and friction induced nonlinearity in solids containing
cracks, Van Den Abeele and colleagues [2,3,11,26] implemented a
series of comprehensive normal and tangential constitutive models into
FEM to control the nonlinear behavior of crack surfaces. Among the
many numerical simulations, some of them use hypothetical defects in
which artificial nonlinear stress-strain relations are introduced into
special elements to represent defects [24]; others employ physical de-
fects by splitting the computational nodes along defects, and then the
normal and tangential contact stresses, which are calculated based on
the relative distances between the corresponding Gauss points located
on the defect surfaces, are applied to the same Gauss point pairs as
boundary conditions for the bulk material simulation
[2–5,11,12,22,23,25–29]. The former only captures the defect behavior
in an approximate manner; the latter may be difficult to explicitly
realize complicated scenarios such as defects with irregular shapes and
especially, the interactions between many defects of different types.

From a computational mechanics point of view, a solid with defects
is essentially a combination of continua (bulk material) and discontinua
(interaction between defect surfaces). Considering this, a numerical
tool that has the capability of handling continua and discontinua si-
multaneously would be helpful. Fortunately, a recently developed nu-
merical method – the combined finite–discrete element method (FDEM)
[30–33], which merges finite element-based analysis of continua with
discrete element-based transient dynamics, contact detection and con-
tact interaction solutions of discontinua, provides a natural solution for
such simulation. To date, a systematic application of FDEM in NDT is
not available in the literature. The goal of this paper is to introduce
FDEM to the NDT community, and to demonstrate its power on simple
problems.

A simple FDEM realization of a solid plate with a crack is presented
in Fig. 1 where the solid (excluding the crack since it is considered as
void) is discretized into finite elements to capture the motion and de-
formation of the bulk material, and the finite elements along the two
sides of the crack also behave as discrete elements to track the normal
and tangential interactions between crack surfaces. By employing
FDEM, the system can be explicitly described and particularly, the
contacts along the sides of the defects can be uniformly processed using
well-developed discrete element method (DEM)-based algorithms.

The focus of the current work is to demonstrate the applicability of
FDEM to the simulation of crack induced nonlinear elasticity in solids,
and to introduce the approach as another alternative for NDT numerical
based analysis. A comparison of the simulated results with laboratory
experiments is beyond the scope of the present paper and thus it is left
for future work. In the following sections, we first provide a brief in-
troduction to the theories of FDEM. Then we illustrate the numerical
model setup and present how the normal (clapping) and tangential
(friction) contact may influence the nonlinear behavior of a cracked
solid. The applicability of FDEM for NDT simulation is demonstrated,
and the corresponding conclusions are drawn.

2. The combined finite-discrete element method (FDEM)

FDEM was originally developed by Munjiza in the early 1990s to
simulate the material transition from continuum to discontinuum [33].
The essence of this method is to merge the algorithmic advantages of
DEM with those of the FEM. The theory of the FDEM can be broken
down into the following parts: governing equations, finite strain-based
formulation for deformation description, contact detection, and contact
interaction algorithms [34–36].

2.1. Governing equations

The general governing equation of the FDEM is [30]

+ =Mẍ Cẋ f, (1)

where M is the lumped mass matrix, C is the damping matrix, x is the
displacement vector, and f is the equivalent force vector acting on each
node which includes all forces existing in the system such as the forces
due to material deformation and contact forces between solid elements.
An explicit time integration scheme based on a central difference
method is employed to solve Eq. (1) with respect to time to obtain the
transient evolution of the system.

2.2. Finite strain based formulation

In FDEM, deformation of the finite elements according to the ap-
plied load is described by a multiplicative decomposition-based for-
mulation [32]. This framework allows for a uniform solution for both
isotropic and general anisotropic materials [34]. Moreover, volumetric
locking due to the lower order finite element implementations can be
eliminated by using a selective stress integration scheme. In addition to
elastic stresses, viscous stresses are also calculated, which are re-
sponsible for the material damping due to deformation [30].

2.3. Contact detection

The finite elements located on the model boundaries (both external
and internal) also act as deformable discrete elements. The contact
detection between discrete elements is conducted using the MRCK
(Munjiza-Rougier-Carney-Knight) algorithm which is based on the de-
composition of the simulation space into identical square (two-dimen-
sional) or cubical (three-dimensional) search cells [31,37]. Consider
that for any two given elements, one called the contactor and the other
one the target, both are mapped onto search cells according to their
current position. The goal of the contact search process is to determine

Fig. 1. Numerical representation of a solid plate with a crack using FDEM. The
solid is discretized into finite elements to capture the bulk material behavior
such as wave propagation. Note that the two crack surfaces do not share nodes,
and thus both closed and open cracks can be explicitly represented by altering
the crack aperture. The finite elements along the two sides of the crack also
behave as discrete elements to simulate the normal and tangential interactions
between crack surfaces.
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whether the contactor and the target share at least one cell. After
processing the contact detection, a list that contains all the pairs of
elements potentially in contact is established and sent for contact in-
teraction processing. It is worth noting that the MRCK contact detection
algorithm is very efficient which is demonstrated by a CPU time pro-
portional to the total number of contact couples, and it is applicable to
systems consisting of many bodies of different shapes and sizes [37].

2.4. Contact interaction

Contact interaction is critical to wave-crack interaction since it
controls the overall nonlinear behavior of the cracked solid. When
contact couples are identified, a penalty function based contact inter-
action algorithm is used to calculate the contact forces between con-
tacting elements [30,31]. In the penalty function method, a small pe-
netration or overlap is allowed between elements in contact, which
then determines the normal contact force (magnitude and direction)
acting on the contacting elements. In the present work, a “triangle to
point” [31] contact interaction algorithm is used in which the target
triangular element is discretized into a series of points distributed on its
edges and each target point is considered as a Gauss integration point
through which the distributed contact forces are integrated (Fig. 2).

In terms of the normal contact force calculation, actual contact will
not occur unless the target point is located inside of the contactor tri-
angle. The normal contact force is calculated using the following
equation obtained through a derivation in which the energy balance is
preserved [30,31]:

=f AE h
H

n n ,N N p N (2)

where =A l n/t t, lt is the length of the target element edge on which the
target point is located, nt is the number of target points per element
edge, Ep is the penalty parameter, h is the distance between target point
and the contactor element edge, H is the height of the contactor element
associated with the contacting edge, and nN is unit vector of the normal
contact force (Fig. 2).

The tangential contact force is assessed by means of the friction
coefficient and the relative tangential displacement between a target
point and contactor element occurring during a time step therefore
taking into account the history of contact [38]. The total relative tan-
gential displacement between a target point and a contactor element
accumulated at time step t, dt , is recorded and used to calculate +dt 1:

= ++d d v tn n( Δ ) ,t t
t

1 T r T (3)

where nT is the unit vector of tangential force, vt
r is the relative tan-

gential velocity between the target point and contactor element at time
step t and tΔ is the time step. The total tangential force at time step t is
calculated by
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where lc is the length of the contactor element edge associated with

tangential contact and μ is the frictional coefficient. The calculated
normal and tangential contact forces are distributed among the nodes of
contactor element and, in a similar manner, the opposite forces are
applied to the target point and distributed among the nodes of the
target element.

It is beyond the scope of present paper to provide detailed de-
scriptions of the above principle. However, details of these can be found
in several FDEM books [30–32]. FDEM allows explicit geometric and
mechanical realization of solids with various types of defects including
cracks (open or closed, with flat, bending or rough surfaces), pores and
debondings of different shapes, as well as the interactions between
them. For the simulations of such problem involving both continua and
discontinua, FDEM is superior to both pure FEM and DEM. Since its
inception [33], FDEM has proven its computational efficiency and re-
liability and has been extensively used in a wide range of endeavors in
both industry and academia, such as stress heterogeneity [39,40],
permeability [41,42], acoustic emission [43] and hydraulic fracturing
[44] in rock masses, tunneling [45,46], block caving [47,48] and rock
blasting [49] in rock mechanics, red blood cell aggregation in medicine
[50], masonry wall stability [51], coastal protection [52], granular
fault evolution [53] and shell structure fracturing [54]. Additionally,
benefitting from the recent implementation of a large-strain large-ro-
tation formulation and grand scale parallelization in FDEM by the Los
Alamos National Laboratory [32,55], the FDEM software package –
HOSS (Hybrid Optimization Software Suite) [56,57] – offers a powerful
tool to study the crack induced nonlinear elasticity in solid material.

3. FDEM simulation examples

As an introductory illustrative application of the use of FDEM for
crack induced nonlinearity simulations, two-dimensional rectangle
models with a single crack are excited using compressive sinusoidal
waves. We first demonstrate the model setup, then a set of simulations
using different combinations of crack aperture and excitation ampli-
tudes are presented for the model with a single horizontal crack to
examine the applicability of FDEM for this type of applications. Finally,
a more detailed exploration of the clapping and friction induced non-
linear elasticity is conducted for models with both horizontal and in-
clined cracks.

3.1. Model setup

Fig. 3 presents the geometry and mesh of the models used in the
simulations. The model has a width W=25mm and height
H=50mm, and two-dimensional plane stress conditions are assumed.
A crack with a length =l W2/3 and aperture a is placed in the center of
the plate. When building the geometry, the inside of the crack is treated
as void, thus the crack aperture is explicitly realized. For the con-
venience of comparing the normal and shear forces, the friction coef-
ficient used between the internal crack surfaces for contact interaction
calculation is set to one. The plate has a density of 2600 kg/m3, Young’s
modulus of 10 GPa, and Poisson’s ratio of 0.25. In terms of the penalty
parameter between contacts, theoretically it should be infinity in order
to avoid penetration between contacting elements; however, a large
penalty parameter will yield a significantly small time step. Recent
studies show that, in general, a penalty parameter that is about 1–2
orders of magnitude larger than the Young’s modulus can ensure the
computational correctness [58]. By compromising between achieving
the correct elastic response between contacting elements and max-
imizing the time step size to reduce the overall computational expense,
a penalty parameter 50 times of the plate’s Young’s modulus, i.e.
500 GPa, is used.

The model consists of 12,894 three-node constant-strain triangular
elements and they are approximately uniformly meshed with an
average element size of around 0.5 mm. This mesh size is carefully
chosen after several trials and ensuring that the total element number isFig. 2. Schematic of contact interaction and contact force calculation.
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sufficient to precisely capture the wave propagation while also assuring
the model is not too computationally expensive. In the current simu-
lation only flat and parallel crack surfaces are used since through these,
the crack aperture can be precisely controlled and it is easier to monitor
which part of the crack has the most contact when subjected to certain
excitation waves. Therefore, the crack used here has a uniform aperture
throughout, except at the crack tips, where chamfered corners are used,
which occupy only two element size (∼1 mm) (see inset of Fig. 3a). A
purely linear elastic stress-strain relationship is employed for the ele-
ments to avoid introducing any nonlinear source from the bulk mate-
rial.

A compressive sinusoidal wave excitation with a frequency
f=100 kHz is acting uniformly at the bottom boundary of the plate as a
velocity boundary condition in the y-direction in the form of

=v t A πft( ) ·cos(2 ),y vy (5)

where Avy is the velocity excitation amplitude. The remaining bound-
aries in the model are left as free. The velocity of this input wave (Eq.
(5)) is obtained by firstly introducing a prescribed strain in y-direction
(εy), which works as a maximum strain intended to excite the model.
Then the amplitude of the displacement in the y-direction is given by

=A H ε· ,d yy (6)

which corresponds to a sinusoidal wave in terms of y-displacement of

=d t A πft( ) ·sin(2 ).y dy (7)

Taking the derivative of d t( )y with respect to time t, the velocity
input wave equation in Eq. (5) is obtained, thus we have the velocity
amplitude of the input excitation of

=A πf A2 · ,v dy y (8)

and the velocity input excitation wave of

=v t πf H ε πft( ) 2 · · ·cos(2 ).y y (9)

The above gives the relationship between the prescribed strain εy,
displacement excitation wave d t( )y and velocity excitation wave v t( )y ,
respectively. This also demonstrates that although velocity boundary
condition is implemented in the FDEM model, it is essentially the
commonly-used displacement boundary condition in this field has been
employed. In the following sections, one of the three (i.e. prescribed
strain, displacement excitation wave and velocity excitation wave) will
be used to describe the input compressive excitation wave, depending

on the type of output data that to be analyzed. The other two can be
obtained accordingly using the above relationships and may also be
provided for reference.

In addition to the horizontal crack where the normal contact is
dominant, a crack inclined by 30° (Fig. 3b) is also used to further ex-
plore the effect of both normal and tangential contacts on the genera-
tion of nonlinear effects. The parameters used in the simulations give a
wave length of 19.6 mm, which is approximately equal to 40 element
length. The time step is 4.0e-9s, which corresponds to 2500 time steps
per wave cycle. According to the previous investigations conducted
using FEM [2], the parameters and meshes used here can guarantee the
convergence of the model and will thus produce stable and accurate
solutions. The models are run on a parallel cluster utilizing 36 pro-
cessors and each model has been excited for 52ms simulation time. A
“sensor” point is positioned 5mm above the model center to track the
motion of the plate. The resulting y-velocity at the sensor point is ex-
ported every 50 time steps (i.e. 2.0e-7 s) and the data between 48ms
and 52ms are extracted for Fast Fourier transform (FFT) analysis to
interpret the nonlinear response of the solid with respect to wave ex-
citation.

3.2. The capability of FDEM for nonlinear elasticity phenomenon
acquisition

To examine the capability of FDEM for capturing nonlinear phe-
nomena induced by the presence of cracks and to explore the re-
lationship between crack aperture and harmonics generation, using the
model with horizontal crack (Fig. 3a), we have designed a series of
scenarios in which different combinations of crack apertures and ex-
citation amplitudes are tested. As can be seen from Fig. 4, three models
with increasing crack apertures of a=0 (closed crack), 5.0e-5mm and
5.0e-3 mm, respectively, are created. Then three increasing prescribed
strains εy =1.0e-8, 1.0e-6 and 1.0e-4, corresponding to excitation
waves with displacement amplitudes of Ady =5.0e-7 mm, 5.0e-5mm
and 5.0e-3mm (based on Eq. (6)), respectively, are used to load the
models. Here, only the horizontal crack is used since, compared with
the inclined crack, it is relatively easier to foretell the range of crack
aperture change when the models are excited using compressive waves
at the bottom boundary, and thus it is possible to predict in which
scenario the crack may have the potential to clap and generate

Fig. 3. Illustration of the FDEM model of a solid plate with a single crack: (a)
horizontal crack located in the center of the plate and the corresponding mesh;
(b) crack inclined 30° with respect to the horizontal direction and located in the
plate center.

Fig. 4. FDEM models with increasing crack aperture and subjected to excitation
waves with increasing amplitudes are created to investigate the relationship
between crack aperture and nonlinear phenomena generation. Note the intact
models are used for comparison purposes. The models located in the dashed
rectangles are expected to generate nonlinear phenomena because of their
potential of clapping between crack surfaces.
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nonlinear outputs.
We expect to observe contact nonlinear phenomena, i.e. appearance

of harmonics in the output recorded at the sensor point, for the models
marked by the dashed rectangles in Fig. 4. That is, for the model with
zero crack aperture, clapping will be guaranteed even when the model
is excited using very small amplitudes, and thus harmonics of the
output wave should be seen for all the three excitation amplitudes.
While for the model with non-zero crack apertures, harmonics of the
output wave are expected when the excitation amplitude is large en-
ough to trigger the clapping between crack surfaces, i.e. the input ex-
citation wave amplitude in terms of displacement is larger than or equal
to the crack aperture size. Therefore, the model with crack aperture
a=5.0e-5mm should be able to generate harmonics when subjected to
the excitation waves with amplitudes of both Ady =5.0e-5mm and
5.0e-3 mm; for the model with crack aperture a=5.0e-3 mm, only the
excitation wave with amplitude Ady =5.0e-3mm can induce harmo-
nics. Additionally, intact models with the same setup are simulated as
references to the cracked models.

Fig. 5 presents an example of the time evolution of y-velocity within
an excitation cycle T for both the intact and closed crack (i.e. a=0)
models subjected to the excitation wave with the largest amplitude
shown in Fig. 4 (i.e. Ady =5.0e-3 mm and Avy =3.1m/s). Both models
have reached steady state and the four time instances are respectively

the beginning, first, second and third quarter of an excitation cycle. As
the compressive wave continually excites at the bottom boundary, the
wave gradually propagates into the model and moves upwards. A
comparison between the two models clearly demonstrates how the
crack perturbs the wave propagation. For the intact model (Fig. 5a), the
wave fades out gradually as it propagates, with a small amount of re-
flection from the boundaries can be observed. While for the cracked
model, when the wave reaches the crack, clapping between crack sur-
faces start to occur along the interface. The wave continually transmits
through the crack, but with a distinct velocity reduction caused by the
reflection of wave energy at the crack surfaces.

The simulation results of the models subjected to the three excita-
tion waves are respectively presented in Fig. 6, Fig. 7 and Fig. 8, in
terms of y-velocity at the sensor point and their corresponding FFTs. As
can be seen from Fig. 6 that for the models excited using the amplitude
of Avy =3.1e-4m/s (i.e. εy =1.0e-8 and Ady =5.0e-7mm), the output
y-velocity at the sensor point for the intact model is still of perfect si-
nusoidal shape (Fig. 6a), as is indicated by the single peak generated at
100 kHz in its FFT (Fig. 6e). However, the output wave amplitude
(∼2.2e-4m/s) is slightly smaller than the excitation amplitude (3.1e-
4m/s). This is mainly due to energy dissipation during the wave pro-
pagation. On the contrary, the output y-velocity at the sensor point for
the closed crack model (a=0) shows a distinct distortion (Fig. 6b) and
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Fig. 5. Evolution of y-velocity within an excitation cycle T for (a) intact model and (b) model with a closed horizontal crack (i.e. a=0) subjected to the excitation
wave with the largest amplitude shown in Fig. 4 (i.e. Ady =5.0e-3 mm and Avy =3.1m/s). The four time instances are respectively the beginning, first, second and
third quarter of an excitation cycle.
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thus harmonics can be seen from its FFT (Fig. 6f). For the other two
cracked models with apertures a=5.0e-5 mm and 5.0e-3mm, as we
expected earlier, no wave distortion or harmonics can be seen since the
excitation amplitude (Ady=5.0e-7 mm) is too small to initiate clapping
between crack surfaces.

Similar results are obtained for the models subjected to the other
two excitation amplitudes of Avy =3.1e-2m/s (i.e. εy =1.0e-6 and
Ady =5.0e-5 mm) and Avy =3.1m/s (i.e. εy =1.0e-4 and Ady =5.0e-
3mm), as are shown in Fig. 7 and Fig. 8, respectively. As the excitation
amplitudes increases to Ady =5.0e-5mm, the model with crack aper-
ture a=5.0e-5 mm starts to clap and generate harmonics (Fig. 7c & g).
While this excitation amplitude is still not sufficient to induce non-
linearity in the model with the largest crack aperture a=5.0e-3 mm
(Fig. 7h). As the excitation amplitude continually increases to
Ady =5.0e-3 mm, i.e. reaches the value of the largest crack aperture,
harmonics are visible in all three cracked models (Fig. 8f-h). When
nonlinearity is observed in a specific model, the output wave generally
displays distinct distortions, as can be seen from Fig. 6b, Fig. 7b-c and

Fig. 8b-d, which is a result of wave perturbation by the clapping be-
tween crack surfaces. Additionally, all these simulations reveal that as
long as the crack exists, the output wave amplitude will be significantly
reduced compared with the intact model (first row of Fig. 6, Fig. 7 and
Fig. 8, about half of the intact model), regardless of clapping and
nonlinear elasticity generation. This is an evidence that the existence of
crack indeed reduces the wave amplitude, as is mentioned earlier in
Fig. 5b the velocity field of the cracked model.

To facilitate the comparison of these models and to summarize, FFTs
of the y-velocity at the sensor point for the above simulations are col-
lected in Fig. 9. We can observe that larger excitation amplitudes
generally yields output waves with higher amplitudes and no nonlinear
elasticity phenomena are visible for the intact model. For the cracked
models, nonlinear elasticity is generated only when the excitation
amplitude is large enough to trigger the clapping between crack sur-
faces. All the simulations demonstrate that the FDEM is capable to si-
mulate the expected behavior of crack induced nonlinear elasticity

Fig. 6. Time evolutions of y-velocity at the sensor point (top row) and their FFTs (bottom row) for the intact model and cracked models (horizontal crack) with crack
apertures a=0 (closed crack), 5.0e-5 mm and 5.0e-3mm, respectively. The models are subjected to compressive excitation wave with amplitudes Avy =3.1e-4 m/s
(i.e. εy =1.0e-8 and Ady =5.0e-7 mm).

Fig. 7. Time evolutions of y-velocity at the sensor point (top row) and their FFTs (bottom row) for the intact model and cracked models (horizontal crack) with crack
apertures a=0 (closed crack), 5.0e-5 mm and 5.0e-3 mm, respectively. The models are subjected to compressive excitation wave with the amplitude Avy =3.1e-
2 m/s (i.e. εy =1.0e-6 and Ady =5.0e-5mm).
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phenomenon.
However, for the model with crack aperture a=5.0e-5mm and

subjected to excitation wave with amplitude Ady =5.0e-5 mm (Fig. 7c
& g), and the model with crack aperture a=5.0e-3mm and subjected
to excitation wave with amplitude Ady =5.0e-3mm (Fig. 8d & h), since
the excitation amplitudes is just about the same as the crack apertures,
it seems only mild contacts between crack surfaces occur and the
generated harmonics are not as strong and regular as their counterpart
scenarios that having better contacts (e.g. Fig. 7b & f and Fig. 8c & g). In
the next section, using the models with the crack aperture a=5.0e-
5mm, we have a closer look at the sensitivity of contact on nonlinear
elasticity generation.

3.3. Clapping and friction induced nonlinear phenomena

To have a detailed check of the relationship between contact status
along the crack interface and the overall nonlinear behavior, we choose
another two excitation waves with amplitudes – Ady =2.5e-5 mm (i.e.
εy =5.0e-7 and Avy =1.6e-2m/s) and Ady =2.5e-4 mm (i.e. εy =5.0e-
6 and Avy =1.6e-1m/s) – one is slightly smaller and the other slightly
larger than Ady =5.0e-5 mm that we have used earlier (Fig. 7c & g), to

excite the model with horizontal crack and aperture a=5e-5mm.
Since the previous simulation shows that only mild contact occurs for
this model subjected to excitation wave with amplitude Ady =5.0e-
5mm, the first excitation amplitude Ady =2.5e-5 mm may not be large
enough to trigger contact between crack surfaces, whereas the second
amplitude Ady =2.5e-4 mm may yield full contact along the crack in-
terface. Therefore, these two new excitation waves, together with the
one used earlier – Ady =5.0e-5 mm, form a scenario through which the
sensitivity of contact on the nonlinearity phenomenon generation can
be examined.

We tracked the changes of crack aperture (a) and relative tangential
displacement (s) along the crack interface, and the overall normal (FN )
and tangential (FT) contact force between crack surfaces, with respect
to time. 15 pairs of monitoring points are placed evenly along the crack
interface, and each pair of points are located symmetrically with re-
spect to the crack axis. By calculating the relative position of each pair
of monitoring points and resolving it into the directions perpendicular
and parallel to the crack orientation, the change of crack aperture a and
relative tangential displacement s, respectively, along the crack inter-
face can be obtained. Here the positive s denotes that a pair of corre-
sponding monitoring points has been moved clockwise compared with
their original positions. The overall normal and tangential contact
forces between crack surfaces are calculated by firstly resolving the
normal and tangential contact forces between each contact element pair
into the directions perpendicular and parallel to the crack orientation
and then integrating them respectively along the crack interface. Since
the overall normal and tangential contact forces are action and reaction
forces, their absolute values are presented in the following analyses.
The non-zero normal and tangential contact forces (FN >0 and/or
FT > 0) as well as the zero crack aperture (a=0) are indicators of
contact between crack surfaces.

The time evolution of crack aperture a, overall normal contact force
FN and the FFT of y-velocity at the sensor point for the horizontal crack
model (a=5.0e-5 mm) subjected to the three excitation waves are
presented in Fig. 10. In case of the small excitation amplitude
Ady =2.5e-5 mm, none of the 15 positions on the crack are in contact
(i.e. a > 0 and FN =0). When the excitation amplitude Ady increases
to the value equals to the crack aperture, i.e. 5.0e-5 mm, some of the 15
positions on the crack are in contact. Since this is a partial contact along
the crack, i.e. only a few positions along the crack are in contact, re-
latively small normal contact force is detected; however, harmonics are
still visible. As the excitation amplitude continually grows to

Fig. 8. Time evolutions of y-velocity at the sensor point (top row) and their FFTs (bottom row) for the intact model and cracked models (horizontal crack) with crack
apertures a=0 (closed crack), 5.0e-5mm and 5.0e-3 mm, respectively. The models are subjected to compressive excitation wave with the amplitudes Avy =3.1m/s
(i.e. εy =1.0e-4 and Ady =5.0e-3 mm).

Fig. 9. Collection of the FFTs of y-velocity at the sensor point for all the si-
mulation cases shown in Fig. 4.
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Ady =2.5e-4 mm, the whole crack interface is in contact (i.e. a=0 and
FN > 0). As a result, a relatively higher overall normal contact force FN
together with the harmonics are generated. A comparison of the results
shown in Fig. 10 also demonstrates that for the horizontal crack, the
clapping at different positions along the crack interface generally oc-
curs at the same pace. Note that here only the crack aperture a and
normal contact force FN are given since the relative tangential dis-
placement s and tangential contact force FT are negligible compared
with the normal components (the tangential components are less than
2% of the normal ones).

The normal contact was primarily triggered in the horizontal crack
model. Next, still use the three excitation waves and the same crack
aperture a=5e-5mm, the inclined crack model presented in Fig. 3b is
employed to investigate the sensitivity and contribution of both the
normal and tangential contacts on nonlinear phenomenon generation.
The results in terms of crack aperture a, relative tangential displace-
ment s, overall normal (FN ) and tangential (FT) contact force and FFT of
y-velocity at the sensor point are presented in Fig. 11. Similar to the
results of the horizontal crack model (Fig. 10), when the model is ex-
cited by the wave with small amplitude Ady =2.5e-5mm, no contact
between the crack surfaces has occurred, and thus both normal and
tangential contact forces are zero throughout and no harmonics are
generated. For the intermediate excitation amplitude Ady =5.0e-5mm,
again, contact only occurs at some positions along the crack interface.
This is visible in the plots of crack aperture and contact forces. As only
partial contact happens, very small normal and tangential contact
forces are induced. Nevertheless, nonlinear features of the output wave
are observed, as is evidenced by the presence of harmonic frequencies.

In case of the largest amplitude Ady =2.5e-4mm, clap occurs along the
entire crack interface, and higher normal and tangential contact forces
are generated, together with a larger oscillation amplitude of both the
crack aperture and shear displacement. In addition to the crack aper-
ture change, distortion (asymmetry) is also clearly visible in the relative
tangential displacement, which is due to the presence of tangential
contact force that reduces the relative movement of crack faces in the
tangential direction. While for the contact force, the overall tangential
contact force is smaller than the normal contact force, as the former can
never exceed the latter, i.e. ⩽F μFT N , where μ =1 in current simula-
tions.

On the contrary to the horizontal crack model (Fig. 10), contacts at
the 15 positions along the crack interface in the inclined crack model do
not occur at the same pace (Fig. 11a & b), which can also be evidenced
by the apparent fluctuation and longer occurrence time range in the
contact force (Fig. 11c). This is due to the different arriving time of the
wave to the crack surface. Additionally, since the effect of excitation
wave on local particle vibration along the inclined crack interface has
to be resolved into directions perpendicular and parallel to the crack
orientation to obtain the normal and tangential response, the magni-
tude of the resulting crack aperture and normal contact force change
(Fig. 11a & c) for the inclined crack model is smaller than that of the
horizontal one (Fig. 10a & b). Moreover, the harmonics generated for
both the horizontal and inclined crack models subjected to the inter-
mediate excitation wave (Ady=5.0e-5 mm) due to partial contact de-
monstrate that the nonlinear elasticity is very sensitive to the crack
surface contact and FDEM has the capability to capture such sensitivity.

As a way to further demonstrate which part of the crack has

Fig. 10. Response of the model with horizontal crack (a=5.0e-5 mm) and subjected to excitation waves with amplitude of Ady =2.5e-5 mm, 5.0e-5mm and 2.5e-
4 mm, respectively: (a) time evolution of aperture a at the 15 positions on the crack interface; (b) time evolution of overall normal contact force FN between crack
surfaces; (c) FFT of y-velocity at the sensor point. The insets give a zoom-in of the results at specific time range.
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experienced the most nonlinearity, we have calculated the FFTs of the
crack aperture change at the 15 positions along the crack interface for
both the horizontal and inclined crack models subjected to the excita-
tion wave with the largest amplitude Ady =2.5e-4mm. The FFTs of the
relative tangential displacement change at the 15 positions for the in-
clined crack model are also calculated. The results for the horizontal
and inclined crack models are presented in Fig. 12 and Fig. 13, re-
spectively. Fig. 12 illustrates that for the horizontal crack model, the
induced nonlinear elasticity distributes uniformly along the crack in-
terface. While for the inclined crack model, pronounced nonlinear be-
haviors induced by normal displacement (crack aperture change)
mainly occur on the slightly left hand side of the crack (Fig. 13a, ne-
gative positions). This is due to the fact that the compressive wave will
first reach the left hand side of the crack; while since it takes longer
time to reach the right hand side, the wave amplitude will be reduced

Fig. 11. Response of the model with 30° inclined crack (a=5.0e-5 mm) and subjected to excitation waves with amplitude of Ady =2.5e-5 mm, 5.0e-5 mm and 2.5e-
4 mm, respectively: (a) time evolution of aperture a at the 15 positions on the crack interface; (b) time evolution of relative tangential displacement s at the 15
positions on the crack interface; (c) time evolution of overall normal (FN ) and tangential (FT) contact forces between crack surfaces; (d) FFT of y-velocity at the sensor
point. The insets give a zoom-in of the results at specific time range.
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Fig. 12. FFTs of crack aperture change at the 15 positions on the crack interface
for the model with horizontal crack (a=5.0e-5 mm) and subjected to the ex-
citation wave with amplitude Ady =2.5e-4mm.
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because of energy dissipation. This results in a larger normal vibration
on the left hand side of the crack and hence, more dominant of the
nonlinear elasticity generation. The harmonics of shear displacement
show the opposite trend, i.e. more pronounced nonlinear behaviors are
located on the right hand side of the crack (Fig. 13b, positive positions).
This is probably because that as the compressive wave propagates to the
crack, part of it turns into shear wave and moves upwards along the
crack interface. Finally, all of the converted shear waves accumulate at
the right hand side corner of the crack and result in a higher tangential
vibration. Further simulations will be conducted to explore the influ-
ence of crack orientation on nonlinear elasticity generation in the near
future.

4. Summary

In this paper we have introduced FDEM by describing the applica-
tion to an intact solid and two simple crack models – one normal to the
forcing wave and one with crack at a 30° angle to the wave. In the
FDEM model, the solid is discretized into finite elements to capture the
wave propagation in the bulk material, and the finite elements along
the two sides of the crack also behave as discrete elements to track the
normal and tangential interactions between crack surfaces. By em-
ploying FDEM, the cracked solid can be explicitly realized and parti-
cularly, the contacts along the sides of the crack can be uniformly
processed using well-developed DEM-based algorithms.

We first create a series of simulation scenarios in which different
combinations of crack aperture and excitation amplitude for the model
with horizontal crack to examine the capability of FDEM for nonlinear
elasticity simulation. The simulation results reveal that larger excitation
amplitudes generally yield output waves with higher amplitudes. For
the intact model, the output wave is harmonically oscillating at the
fundamental frequency and no nonlinear elasticity phenomenon has
been observed. Whereas for the cracked models, nonlinear elasticity is
generated when the excitation amplitude is sufficient to trigger the
contact between crack surfaces, which is evidenced by the appearance
of harmonics of the output wave. The simulations demonstrate that
FDEM is capable to simulate the expected behavior of crack induced
nonlinear elasticity.

Then for the models with horizontal and 30° inclined cracks of
aperture a=5e-5mm, we have a detailed check of the relationship
between contact status along the crack interface and the overall non-
linear behavior. It is shown that for the horizontal crack model, the

nonlinear elasticity is mainly triggered by the normal contact, and it is
distributed uniformly along the crack interface. Whereas for the in-
clined crack model, both the normal and tangential contacts contribute
to the resulting nonlinear elasticity generation: pronounced nonlinear
behaviors induced by normal displacement mainly occur on the slightly
left hand side of the crack; the harmonics of shear displacement show
the opposite trend, i.e. more pronounced nonlinear behaviors are lo-
cated on the right hand side of the crack. Additionally, the harmonics
generated for both the horizontal and inclined crack models due to
partial contact demonstrate that the nonlinear elasticity is very sensi-
tive to the crack surface contact. The simulations not only reveal the
influence of normal and tangential contact on the nonlinear elasticity
generation, but also demonstrate the capabilities of FDEM for revealing
the causality of nonlinear elasticity in cracked solid and its potential to
assist in Non-Destructive Testing (NDT).

The simulation results are for two simple and idealized systems.
Although in the current simulation only flat crack surfaces are used,
because of the approach in FDEM for contact processing, FDEM has the
capability of considering rough cracks by either explicitly creating
crack surfaces with certain waviness or employing an empirical crack
constitutive model that implicitly considers crack roughness for contact
interaction calculation, as is already implemented and tested earlier in
FDEM [59]. Importantly, FDEM can also simulate the cracks with var-
ious shapes (open, closed, flat, bending curve), the interaction between
different types of defects as well as crack propagation under loads.
Future investigations considering complex crack geometries will be
conducted on the influence of these factors on nonlinear phenomenon
generation in defected solid using FDEM.
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