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A B S T R A C T

To correctly incorporate stress variability in the increasingly widespread application of probabilistic‑related rock
mechanics analyses, a robust approach for random stress tensor generation is essential. However, currently, the
customary scalar/vector approaches to the generation of random stress tensors, which violate the tensorial
nature of stress, together with other existing quasi‑tensorial applications that consider the tensor components as
statistically independent variables, may yield biased results. Here, we propose a multivariate random vector
generation approach for generating random stress tensor components that is based on tensorial techniques and
which incorporates inter-component correlation. Differences between the proposed fully tensorial and existing
quasi-tensorial approaches are demonstrated by examining the distributions of the tensors generated using both
approaches, and the efficacy and transformational consistency of the proposed fully tensorial approach are
investigated by generating random tensors in different coordinate systems. Our results suggest application of
the existing quasi-tensorial approach (which ignores covariance) leads to greater scatter in generated tensors
than does application of the proposed fully tensorial approach (which includes covariance). Additionally, the
transformational consistency of the proposed fully tensorial approach allows generation of random tensors in
any convenient coordinate system, while the existing quasi-tensorial approach only permits generation of
random tensors in a particular coordinate system. The proposed fully tensorial approach provides a method that
will assist with probabilistic-related analyses of rock engineering structures.

1. Introduction

In situ stress is an important parameter for a wide range of
endeavours in rock mechanics, including rock engineering design,
hydraulic fracturing analysis, rock mass permeability and evaluation
of earthquake potential.1–5 Because of the inherent complexity of
fractured rock masses in terms of varying rock properties, the presence
of discontinuities and unclear boundary conditions,4 stress in rock
often displays significant variability.6 With the increasingly widespread
application of probabilistic or reliability-based analyses in rock me-
chanics, incorporating stress variability in these analyses is becoming a
necessity.7–12 A robust approach for random stress tensor generation –
i.e. one that is faithful to the tensorial nature of stress – is essential for
such work. Here, and particularly to assist probabilistic-related ana-
lyses in rock mechanics that need to consider the inherent variability of
in situ stress, we present a fully tensorial technique for generating
random stress tensors.

Currently in rock mechanics, stress magnitude and orientation are
customarily processed separately (e.g. Fig. 1). This processing effec-
tively decomposes the second order stress tensor into scalar (principal
stress magnitudes) and vector (principal stress orientations) compo-

nents, to which classical statistics13 and directional statistics14, respec-
tively, are applied.6,7,15–26 Following this, probabilistic analyses are
generally implemented by drawing random variates separately from the
statistical distributions of both principal stress magnitude and orienta-
tion.7 These customary scalar/vector approaches violate the tensorial
nature of stress and may yield biased results.27–30 In particular,
orthogonality of the randomly generated principal stresses is not
guaranteed.

Rather than analysing principal stress magnitude and orientation
separately, and in order to remain faithful to the tensorial nature of
stress, stress analysis should be conducted on the basis of tensor
components obtained in a common Cartesian coordinate system.
Several researchers have followed this technique in random stress
tensor generation,31–33 with the random tensors being based on the
mean and variance of each tensor component relative to a common
coordinate system. However, this existing quasi-tensorial approach
considers the tensor components as statistically independent variables,
and ignores any correlation between them. The result is, to date there
seems to have been no mathematically rigorous proposal from the rock
mechanics community for random stress tensor generation.

Stress tensors, which are 2×2 or 3×3 symmetric matrices, together

http://dx.doi.org/10.1016/j.ijrmms.2016.12.011
Received 13 April 2016; Received in revised form 28 September 2016; Accepted 22 December 2016

⁎ Corresponding author.
E-mail address: k.gao@mail.utoronto.ca (K. Gao).

International Journal of Rock Mechanics & Mining Sciences 94 (2017) 18–26

1365-1609/ © 2016 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/13651609
http://www.elsevier.com/locate/ijrmms
http://dx.doi.org/10.1016/j.ijrmms.2016.12.011
http://dx.doi.org/10.1016/j.ijrmms.2016.12.011
http://dx.doi.org/10.1016/j.ijrmms.2016.12.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijrmms.2016.12.011&domain=pdf


with other matrix-valued quantities, play a pivotal role in many
subjects such as solid mechanics, physics, earth science, medical
imaging and economics.34 To explicitly account for the inherent
variability of such matrix-valued quantities, matrix variate statistics –
as a generalisation of multivariate statistics – has been developed,34

and we have previously demonstrated that this statistics is appropriate
for stress variability analysis.35 Matrix variate statistics and multi-
variate statistics are often used interchangeably by statisticians,36–38

and it has been demonstrated that matrix variate analysis of stress
tensors and multivariate analysis of their distinct components are
statistically equivalent.34,35,39 Thus, from the viewpoint of random
tensor generation, instead of generating the whole stress tensor, it is
correct and more convenient to form a stress tensor by generating the
distinct tensor components in a multivariate manner. Here, we use
“distinct tensor components”, rather than the customary “independent
tensor components”, and the reason for this is discussed later.

In the present paper, in order to propose a robust method for
generating random stress tensors, we first examine related work in rock
mechanics. We discuss the deficiency of processing principal stress
magnitude and orientation separately, and the inappropriateness of the
customary scalar/vector random stress generation approach, and
examine the applicability of the existing quasi-tensorial applications
found in the literature. Then, using a multivariate normal distribution

model of the distinct tensor components as an example, we present a
multivariate random vector generation approach for generating ran-
dom stress tensor components that incorporates inter-component
correlation. We illustrate the difference between the existing quasi-
tensorial and new approaches, and by analysing actual stress data we
demonstrate the efficacy of the proposed fully tensorial approach by
examining the distributions of the tensors generated using both
approaches in terms of tensor components and principal stresses.
Finally, the transformational consistency of the proposed fully tensorial
approach is illustrated by generating random tensors in different
coordinate systems.

2. Related work

2.1. Deficiency of the customary scalar/vector approach

As noted above, the customary scalar/vector approach employed in
rock mechanics of processing principal stress magnitude and orienta-
tion separately may yield unreasonable results. Here, we re-present the
succinct and clear example presented in Dyke et al.29 to emphasise this.

Let S1 and S2 be the two stress states

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥S S= 18 0

0 10 and = 10 0
0 18 ,1 2

(1)

referred to a common Cartesian coordinate system. These stress states
are also represented in Fig. 2a by ellipses whose semi-axes denote the
magnitude and orientation of their principal values. S1 and S2 clearly
possess identical principal stress magnitudes, but different principal
stress orientations. If we separately determine the principal stress
mean magnitudes and mean orientations, the result is a mean
represented by ellipse A shown in Fig. 2b. However, when the tensorial
approach that averages the corresponding tensor components40 is
applied, the mean symbolised by ellipse B results (Fig. 2b). If we apply
the principles of solid mechanics and consider S1 and S2 as perturba-
tions from some mean state, then the tensorial mean of

⎡
⎣⎢

⎤
⎦⎥S = 14 0

0 14 (2)

is clearly correct. In essence, the customary scalar/vector approach is
deficient in that it averages stress states (i.e. principal stresses) that are
referred to their own, potentially unique, coordinate systems. This both
violates the tensorial nature of stress and erroneously applies statistical
tools to process data that are referred to different geometrical bases.

Although this example concerns only the case of calculating the
mean of two stresses, this fundamental reasoning applies also to the
case of additional stress tensors, as well as to statistics such as
dispersion calculation, distribution characterisation and generation of
random stress tensors. Thus, the conclusion to be drawn is that
statistical and probabilistic applications based on separate processing
of principal stress magnitude and orientation will be incorrect and may
yield unreasonable results. Since the generation of random stress
tensors depends on the underlying statistical model, randomly gen-
erating stress magnitude and orientation separately will be inappropri-
ate. Instead, random stress tensors should be generated using tensorial
approaches that generate random tensor components referred to a
common Cartesian coordinate system, and, as shown below, some
reports of this exist in the literature.

2.2. Existing quasi-tensorial random tensor generation approaches

A survey of the rock mechanics literature reveals the existence of a
tensorial approach to random tensor generation that is based on the
means and variances of the distinct tensor components of measured in
situ stress data, and which generates random tensors in the coordinate
system that aligns with the direction of the principal components of the

Fig. 1. Customary analyses of stress examine principal stress magnitude and orientation
separately using classical statistics and directional statistics, respectively (after Brady &
Brown26).
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mean stress tensor.31–33 This approach first takes a group of n stress
measurements in a global x-y-z Cartesian coordinate system, the ith
stress tensor Si of which is given by

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

S =

σ τ τ
σ τ

symmetric σ
,i

x xy xz

y yz

z

i i i

i i

i (3)

where σ and τ are the normal and shear tensor components, respec-
tively. For convenience, we introduce the half-vectorisation function
vech(⋅), which stacks only the lower triangular (i.e. on and below the
diagonal) columns of a symmetric matrix.41 (p. 246) For example, for the
tensor of Eq. (3), we have vector

s S= vech( ) = [σ τ τ σ τ σ ] = [σ τ τ σ τ σ ]i i x yx zx y zy z
T

x xy xz y yz z
T

i i i i i i i i i i i i

(4)

containing the six distinct components, where [·]T denotes the matrix
transpose. In terms of s the mean of these six tensor components is
then given by

s S= vech( ) = [σ τ τ σ τ σ ] ,x xy xz y yz z
T

(5)

where S is the Euclidean mean stress tensor,40 i.e.
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(6)

A number of reports exist in which this Euclidean mean has been used
as a mean stress tensor.29,31–33,42,43

Continuing, the eigenvectors of S (i.e. the direction of the principal
components of the mean stress tensor) are then used to define a new
Cartesian coordinate system X-Y-Z, and the original stress data
transformed into this system. Using the variance function,

x x xvar( ) = ∑ ( − )
n i

n
i

1
− 1 =1

2, and recognising that τ = τ = τ = 0XY YZ ZX ,
the variances of the six distinct tensor components are then calculated
by separate processing of each transformed tensor component31–33,43:

⎡⎣ ⎤⎦∑
n

σ = [var(σ ) var(τ ) var(τ ) var(σ ) var(τ ) var(σ )]

= 1
− 1 (σ − σ ) (τ ) (τ ) (σ − σ ) (τ ) (σ − σ ) .

i X XY XZ Y YZ Z

i

n

Xi X XYi XZi Yi Y YZi Zi Z

s
2

=1

2 2 2 2 2 2

(7)

Using the mean and variance of each tensor component calculated in
Eqs. (5) and (7), and assuming a normal distribution for each
component, a random stress tensor in the X-Y-Z coordinate system is
generated by drawing a random value from each of the six independent
distributions. Additional random stress tensors are obtained by
repeating the sampling procedure.

This approach indeed generates random stress tensors in a tensorial
manner, and is theoretically more reasonable than that of separately
generating random principal stress magnitudes and orientations from
their respective distributions.7 However, it assumes that each of the six
distinct stress tensor components follows an independent univariate
distribution, and ignores any statistical correlation between them. We
suggest that it is because we routinely refer to the “six independent
components” of the stress tensor that we intuitively consider them to be
statistically independent elements. However, since the statistical
correlation between tensor components is not necessarily zero (as we
show below using actual stress data), and thus they may not be
statistically independent, we propose a multivariate statistical ap-
proach that considers both the variance and covariance of the tensor
components.

3. Proposed fully tensorial approach for random stress
tensor generation

Random stress tensors can be obtained by applying multivariate
statistics to generate random vectors containing the distinct tensor
components since we have demonstrated that the variability of stress
tensors can be sufficiently and appropriately characterised by their
distinct tensor components in a multivariate manner.39 The theoretical
basis of this can be derived from the definition of the symmetric matrix
variate distribution, which has been developed to explicitly quantify the
variability of symmetric matrix-valued quantities,34 (p. 71) and has been
revealed to be appropriate for stress variability analysis.35 Here we use
a normal distribution to simply demonstrate this.

By definition, a symmetric matrix Si is said to follow a symmetric
matrix variate normal distribution with mean Μ and covariance matrix
Ω if and only if the vector s S= vech( )i i follows a multivariate normal
distribution with mean μ Μ= vech( ) and covariance matrix Ω s= cov( )i ,
where cov(⋅) denotes the covariance function.41 (p. 428) Matrix variate
statistics and multivariate statistics are often used interchangeably
since they have the same statistics and probability density function.36–
39 Thus, instead of generating the whole stress tensor, it is convenient
to generate a vector containing the distinct tensor components in a
multivariate manner and use these components to form a stress tensor.

Since the multivariate normal distribution is the most widely used

Fig. 2. Demonstration of stress tensor averaging using customary scalar/vector and
tensorial approaches (after Dyke et al.29).
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distribution type, and observations are often seen to be approximately
normally distributed,34 the proposed fully tensorial random vector
generation approach employs a multivariate normal statistical model as
an example, which requires the mean and covariance matrix of the
distinct tensor components of the measured in situ stress data as
inputs. In addition, this use of the normal distribution allows us to
compare the proposed approach to the existing quasi-tensorial ap-
proach, since the latter also uses the normal distribution. The multi-
variate normal model implies that the measured in situ stresses and the
generated stress tensors are all samples from the same multivariate
normal population. For data that follow a multivariate normal dis-
tribution, maximum likelihood estimation (MLE) of parameters is
recommended44 (p. 311) as it gives more robust estimation of the
variance and covariance than the unbiased estimation presented in
Eq. (7).

After transforming the stress measurements into a global x-y-z
Cartesian coordinate system, the MLE of the mean and covariance
matrix of the six distinct tensor components are

μ sˆ = = [σ τ τ σ τ σ ]x xy xz y yz z
T

(8)

and
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respectively. Here, n in the denominator of Eq. (9) indicates MLE.
Finally, multivariate random vector generation using the estimated
mean and covariance matrix of Eqs. (8) and (9),45 (p. 197) as routinely
applied in multivariate statistics, is used to generate random stress
tensor components.

A direct way of obtaining random vectors that follow a multivariate
normal distribution is to first generate a vector that contains six
independent and identically distributed standard normal random num-
bers – say, v v v v v vv = [ ]T1 2 3 4 5 6 – and then form the random vector

s Lv μ= + ˆr (10)

where L is a 6×6 lower triangular matrix obtained by Cholesky decom-
position of the covariance matrix in Eq. (9) such that LL Ω= ˆT .45 (p. 197)

Then, vector sr follows a multivariate normal distribution N μ Ω( ˆ , ˆ )6 .
Repeating this procedure generates a series of random stress data.

Eq. (10) shows that generation of random stress tensors is
essentially an application of multivariate random vector generation.
Mathematical software packages such as MATLAB46 and GNU
Octave47 provide the function mvnrnd for multivariate normal random
vector generation, and in the current application this function directly
takes as arguments the mean vector and covariance matrix calculated
by Eqs. (8) and (9), respectively.

Comparing the proposed fully tensorial approach to the existing
quasi-tensorial one presented in Section 2.2 shows that the existing
quasi-tensorial approach is essentially a multivariate method that uses
a matrix L formed from decomposition of a diagonal covariance matrix
in which the main diagonal elements are variances of the six distinct
tensor components, i.e.

⎡
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var(τ ) 0
symmetric var(σ )
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X
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XZ

Y

YZ

Z

s
2
i

(11)

Here, the diag(⋅) function creates a square diagonal matrix with the
input elements on the leading diagonal. As the off-diagonal elements,
which represent correlations, have the value of zero, the existing quasi-
tensorial approach is seen to assume statistical independence of tensor
components. The inappropriateness of this is shown next, using actual
in situ stress data.

4. Application, comparison and discussion

To give a detailed demonstration of the proposed fully tensorial
random tensor generation approach and compare it with the existing
quasi-tensorial method, here we use both approaches to generate
distributions of the tensor components associated with actual stress
data.

4.1. Comparison between the existing quasi-tensorial and proposed
fully tensorial approaches

17 complete stress tensors obtained at a depth of around 417 m
have been extracted from the in situ stress measurements made at the
AECL's Underground Research Laboratory.6 The data, transformed
into the common coordinate system of x East, y North and z vertically
upwards, together with their Euclidean mean are presented in Table 1.
Since the existing quasi-tensorial approach only generates random
tensors in the coordinate system aligned with the direction of the
principal components of the mean stress tensor, in order to compare
both approaches we first transform the stress data into this coordinate
system. The principal stress directions are the eigenvectors of the
Euclidean mean stress tensor, and are found to be

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥R =

0.1037 −0.9792 −0.1743
−0.9913 −0.1160 0.0615
−0.0805 0.1664 −0.9828

,T

(12)

where the three column vectors correspond to the directions of σ1, σ2
and σ3, respectively, referred to the x-y-z frame.

The 17 stress data are now transformed into a new X-Y-Z Cartesian
coordinate system that coincides with the eigenvectors using ordinary
stress transformation, i.e.

S RS R′ = ,i i
T (13)

where S′i denotes a stress tensor in the X-Y-Z coordinate system. The
mean and covariance matrix of the six distinct components are

Table 1
In situ stress tensor components and their Euclidean mean in the x-y-z coordinate
system (data from Martin6).

Depth (m) Stress tensor components (MPa)

σx τxy τxz σy τyz σz

416.55 43.25 4.67 −3.44 32.67 −0.34 15.35
416.57 41.20 6.59 −3.32 31.30 0.46 17.69
416.60 42.92 8.80 −3.97 35.83 2.83 14.57
416.62 45.11 5.42 −4.44 31.59 2.29 18.34
416.68 42.57 4.36 −1.93 28.27 0.85 15.13
416.69 53.78 5.26 −2.26 31.51 3.62 17.61
416.70 26.05 −7.48 −2.57 38.40 1.74 12.35
416.71 28.85 −12.01 −5.65 45.40 6.71 16.29
416.73 30.96 −9.73 −3.86 42.67 0.45 14.56
416.77 23.88 −9.88 −3.70 51.36 1.09 15.19
416.79 34.97 −14.97 −4.51 57.51 1.80 11.74
416.81 27.89 −10.89 −1.60 44.53 −0.24 14.22
417.17 33.78 6.06 −2.19 46.27 0.19 14.59
417.17 33.09 6.35 −5.77 45.00 0.10 18.15
417.17 26.07 4.60 −3.30 42.37 3.14 12.69
417.17 28.18 4.70 −3.89 40.82 3.72 18.25
417.17 29.73 3.00 −4.92 40.55 −0.08 14.22
Euclidean mean 34.84 −0.30 −3.61 40.36 1.67 15.35
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μ̂′ = [40.52 0 0 35.42 0 14.61] MPaT (14)

and

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

Ω̂′ =

74.53 −38.37 −11.65 −56.12 −7.95 −9.17
45.74 9.07 32.75 0.97 5.46

5.79 10.52 0.43 2.01
78.81 10.49 9.86

3.35 0.62
symmetric 3.67

MPa ,2

(15)

respectively. The non-zero off-diagonal elements in Eq. (15) indicates
correlation between the various distinct stress tensor components, and
suggests that assuming these to be zero (i.e. the existing quasi-tensorial
approach) is incorrect. The existing quasi-tensorial approach sum-
marised in Section 2.2 uses as the covariance matrix the clearly
different diagonal matrix comprising the variances of tensor compo-
nents, which for these data is

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

diag(σ ) =

74.53 0 0 0 0 0
45.74 0 0 0 0

5.79 0 0 0
78.81 0 0

3.35 0
symmetric 3.67

MPa .s
2 2
i

(16)

The above calculations are particularly significant when we consider
the customary understanding in rock mechanics that the complete
stress tensor comprises “six independent components”. Statistically,
this is only true if the correlations between the stress components are
zero.13 (p. 73) However, Eq. (9) in general will not lead to correlations
between tensor components of zero (as Eq. (15) demonstrates), and
treating tensor components as independent entities will introduce
errors in applications such as random tensor generation. We therefore
suggest using the term “six distinct components” rather than “six
independent components” in order to be statistically correct48 (p. 56) as
well as avoiding misinterpretations.

Using the above statistics of actual in situ stress data, we generate
large numbers of random tensors using both the existing quasi-
tensorial and proposed fully tensorial approaches and compare their
differences. Generating 5×106 random tensors, using the existing
quasi-tensorial approach summarised in Section 2.2 and the proposed
fully tensorial approach in Section 3, and using n in place of n( − 1) in
the denominator of Eq. (7), resulted in a covariance matrix for the
existing quasi-tensorial approach of

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

Ω̂′ =

74.58 −0.01 0.01 0.01 −0.01 −0.01
45.70 0 0 −0.01 0

5.79 −0.01 0 0
78.80 0.01 −0.01

3.35 0
symmetric 3.67

MPa ,e
2

(17)

and for the proposed fully tensorial approach of

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

Ω̂ =

74.57 −38.39 −11.65 −56.17 −7.96 −9.18
45.76 9.07 32.79 0.98 5.46

5.79 10.52 0.43 2.01
78.85 10.50 9.87

3.35 0.62
symmetric 3.68

MPa .p
′ 2

(18)

The almost zero off-diagonal elements in Eq. (17) and the almost
identical leading diagonals of Eqs. (15) and (17) demonstrate that the
existing quasi-tensorial approach indeed generates statistically inde-
pendent tensor components the variances of which are those of the
measured data. To compare the difference between Eqs. (15) and (18),
we introduce a distance measure approach – Euclidean distance, which
is commonly used to compare the difference between matrices or
vectors of the same dimensions, e.g. Dutilleul38. For example the
difference between matrices A and B can be quantified by their
Euclidean distance, i.e.

d A B A B( , ) = − ,F (19)

where · F denotes the Frobenius norm (also called Euclidean norm).41
(p. 72) The Euclidean distance between Eqs. (15) and (18) is found to be
0.12 MPa2, rather than zero, but we believe this small value is a result
of bias related to random sampling. We thus conclude that the
proposed fully tensorial method generates tensors whose variances
and covariances are equivalent to those of the measured data.

The sequence of the distinct tensor components used above is the
one shown in Eq. (4). If we change the sequence to put shear
components first, followed by normal components to give

s′ = [τ τ τ σ σ σ ] ,i xy xz yz x y z
T

i i i i i i (20)

and generate 5×106 random tensors using both the existing quasi-
tensorial and proposed fully tensorial approaches, then the mean and
covariance matrix obtained using the existing quasi-tensorial approach
are

μ̂′ = [0 0 0 40.52 35.42 14.61] MPae
T

(21)

and

⎡

⎣
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⎤

⎦

⎥⎥⎥⎥⎥⎥

Ω̂′ =

45.73 −0.01 −0.01 0.03 −0.01 0
5.79 0 −0.01 −0.01 0

3.35 0 0.01 0
74.48 −0.01 0

78.83 −0.01
symmetric 3.68

MPa ,e
2

(22)

respectively, and the mean and covariance matrix obtained using the
proposed fully tensorial approach are

μ̂′ = [0 0 0 40.52 35.42 14.61] MPap
T

(23)

and

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

Ω̂′ =

45.79 9.08 0.98 −38.42 32.83 5.47
5.79 0.43 −11.66 10.53 2.01

3.35 −7.96 10.50 0.62
74.61 −56.20 −9.18

78.89 9.86
symmetric 3.67

MPa ,p
2

(24)

respectively. Comparing Eqs. (21) and (23) to Eq. (14), and Eqs. (22)
and (24) to Eqs. (16) and (15), respectively, shows that the elements of
the mean and covariance matrices are identical (barring random
sampling effects), although in a different sequence. This demonstrates
that the sequence of stress components has no effect on the statistical
properties of the group of stress tensors. Nevertheless, for consistency
we use the sequence presented in Eq. (4) throughout the remainder of
this work.

Probability density distributions of the six tensor components
generated by both approaches are shown in Fig. 3, and are seen to be
practically identical. As correlations between tensor components
cannot be displayed in Fig. 3, we further plot in Fig. 4 the distributions
of the principal stress magnitudes and orientations. The distributions
of principal stress magnitudes (Fig. 4a-c) are those of the 5×106

generated tensors, while to maintain clarity in the distribution of
principal orientations (Fig. 4d-f) a random selection of only 500
generated tensors has been plotted. As a further aid to clarity of
visualisation and to assist in comparison, the hemispherical projections
in each of Fig. 4d-f have been rotated to place the Euclidean mean
direction of the corresponding principal stress at the centre, with the
Euclidean mean directions of the other principal stresses located at top,
bottom, left and right of each projection. The angular differences
between the mean principal directions of the 500 tensors and the
population are practically insignificant, as shown in Table 2.

Using the generalised variance we have introduced previously in
Gao and Harrison49,50 – i.e.

V S Ω( ) = ,g i (25)
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where · denotes the matrix determinant – to quantify the dispersion of
the stress data generated by both approaches (the larger the general-
ised variance, the more dispersed are the stress data), we find that the
proposed fully tensorial approach produces a generalised variance of
6.57×105 (i.e. the determinant of Eqs. (15) or (18)), whereas the
existing quasi-tensorial approach produces a significantly larger value
of 1.91×107 (i.e. the determinant of either Eqs. (16) or (17)). In other
words, the existing quasi-tensorial approach, which ignores correlation
between tensor components, will generate random stresses with great-
er scatter than will the proposed fully tensorial approach. Indeed, as
Fig. 4 shows, the magnitudes of σ1 and σ2, and the orientations of σ2 and
σ3 generated by the proposed fully tensorial approach, appear more
concentrated than those associated with the existing quasi-tensorial
approach. Note that these determinants have units of (stress)12, and so
their magnitudes are dependent on the stress units in use. Continuing,
we note that the probability density distributions resulting from the
proposed fully tensorial approach and shown in Fig. 5 are generally
similar to those illustrated in Fig. 1a, in particular in terms of the
distinct overlap of the distributions associated with each principal
stress. Finally, a comparison of Fig. 4, Fig. 5 and Eq. (18) suggests that
the wide dispersion of σ1 and σ2 magnitudes and orientations may be
related to the elevated magnitudes of variance and covariance asso-
ciated with σx, σy and τxy (i.e. var(σ )x =74.57, var(σ )y =78.85, var(τ )xy
=45.76 and cov(σ , σ )x y =−56.17), as these are more than 1 order of
magnitude larger than those associated with σz (i.e. var(σ )z =3.68).
Further investigation is being conducted to confirm this.

4.2. Transformational consistency of the proposed fully tensorial
approach

In the above analysis, random tensors are generated in the
coordinate system that coincides with the principal directions of the
mean stress tensor. However, for practical application it is important
that the approach can be used with any convenient coordinate system,
and so here we examine transformational consistency with respect to
coordinate systems. Transformational consistency in this context can
be interpreted such that after transforming the random tensors
generated in different coordinate systems into a common frame, all
tensor groups should have the same mean and covariance matrix.

In order to test the transformational consistency of the proposed fully

tensorial approach, we first transform the 5×106 random tensors generated
previously in the X-Y-Z principal stress coordinate system into the original
x-y-z coordinate system (i.e. x East, y North and z vertically upwards) and
compute the mean μ̂1 and covariance Ω̂1 of these. Additionally, another
5×106 random tensors are generated directly in the original x-y-z
coordinate system using the statistics of the actual in situ stress tensors
in the x-y-z coordinate system shown in Table 1, i.e. the mean

μ̂ = [34.84 −0.30 −3.61 40.36 1.67 15.35] MPaT (26)

and the covariance matrix

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

Ω̂ =

67.59 34.96 1.74 −42.09 0.11 7.01
63.61 0.72 −40.24 −1.75 7.86

1.43 −2.92 −0.63 −0.59
58.29 0.38 −6.85

3.33 0.63
symmetric 4.13

MPa ,2

(27)

and the mean μ̂2 and covariance Ω̂2 of these calculated. The mean tensors
of the two generated tensor groups are

μ̂ = [34.83 −0.31 −3.61 40.36 1.67 15.35] MPaT
1 (28)

and

μ̂ = [34.83 −0.30 −3.61 40.36 1.67 15.35] MPa,T
2 (29)

respectively, which are seen to be identical to practical precision and have a
Euclidean distance between them of d μ μ( ˆ , ˆ )1 2 =0.01 MPa. The covariance
matrices of the two groups are

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

Ω̂ =

67.60 34.97 1.74 −42.09 0.11 7.01
63.67 0.72 −40.24 −1.76 7.86

1.43 −2.93 −0.63 −0.58
58.28 0.38 −6.85

3.33 0.63
symmetric 4.13

MPa1
2

(30)

and

Fig. 3. Probability density distributions of tensor components generated in the X-Y-Z coordinate system by both the proposed fully tensorial and existing quasi-tensorial approaches.

K. Gao, J.P. Harrison International Journal of Rock Mechanics & Mining Sciences 94 (2017) 18–26

23



⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

Ω̂ =

67.61 34.96 1.73 −42.10 0.11 7.01
63.62 0.72 −40.25 −1.75 7.86

1.43 −2.93 −0.63 −0.59
58.32 0.38 −6.86

3.34 0.63
symmetric 4.13

MPa ,2
2

(31)

respectively, with a Euclidean distance between these of d Ω Ω( ˆ , ˆ )1 2

=0.07 MPa2. That the means and covariance matrices are not identical is
once again, we believe, an artefact of the random sampling. However, the
negligible difference between the transformed tensor groups in terms of
both mean and covariance matrix shows the groups to be transformation-
ally invariant. This is supported by the plots in Fig. 6, which show the
probability density distributions of the six distinct tensor components of the
two groups to be practically identical.

A large number of additional calculations using different coordinate
systems, but not given here due to space constraints, confirm the
transformational consistency. This indicates that the proposed fully
tensorial approach can generate random stress tensors in any con-
venient coordinate system, in contrast to the existing quasi-tensorial
approach which is limited to generating random tensors in the
coordinate system that coincides with the principal directions of the
Euclidean mean stress tensor. However, further analytical investiga-
tions are needed to identify how the statistics and distributions of the
distinct tensor components are related across different coordinate
systems.

In the above analyses we have assumed that the distinct tensor
components follow a multivariate normal distribution, but it is not yet
known what probability distribution is best suited to in situ stresses.
When information regarding the underlying probability distribution of
in situ stress tensors becomes available, the methodology presented
here can be used but with the appropriate distribution being sub-
stituted for the multivariate normal distribution.

5. Conclusions

We have proposed a multivariate approach to generating random
stress tensors using the mean and covariance matrix of the distinct
tensor components of a sample of stress tensors referred to a common
Cartesian coordinate system.

The proposed fully tensorial approach uses the covariance matrix of
the distinct tensor components, and thus considers both the variance of
and covariance between the components. This is in contrast to the existing
quasi-tensorial method, which uses a diagonal matrix comprising the

Fig. 4. Distributions of principal stress magnitudes and orientations of random tensors generated by both proposed fully tensorial and existing quasi-tensorial approaches (for clarity
the orientation plots show a random selection of only 500 generated tensors, and for improved visualisation and easier comparison each hemispherical projection has been rotated to
place the Euclidean mean at the centre of the projection and the other two Euclidean mean principal stress directions at the N-S and E-W positions).

Table 2
Typical angular differences between the mean principal directions of the 500 generated
data and the population for both proposed fully tensorial and existing quasi-tensorial
approaches (note that these values will change for each group of random tensors).

σ1 (deg) σ2 (deg) σ3 (deg)

Proposed fully tensorial approach 1.2 1.2 0.3
Existing quasi-tensorial approach 1.2 1.1 0.4

Fig. 5. Probability density distributions of principal stress magnitudes of random
tensors generated by the proposed fully tensorial approach.
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variances of the distinct tensor components as the covariance matrix, and
thereby ignores any statistical dependence between the tensor compo-
nents. To explicitly recognise the potential for statistical dependence
between components, in order to be consistent with mathematical
nomenclature, and to avoid misinterpretations, we recommend referring
to the tensor components as “six distinct components”, rather than the
heretofore customary “six independent components”.

We have compared the proposed fully tensorial and existing quasi-
tensorial approaches by generating random tensors in a Cartesian
coordinate system (X-Y-Z) aligned with the principal directions of the
Euclidean mean of the sample tensors. Our results suggest application
of the existing quasi-tensorial approach (which ignores covariance)
leads to greater scatter of generated tensors than does application of
the proposed fully tensorial approach (which includes covariance).

We have demonstrated the transformational consistency of the
proposed fully tensorial approach by generating random stress tensors
in different coordinate systems, and comparing the mean, covariance
matrix and distributions of the stress tensor components in the context of
a common coordinate system. The transformational consistency of the
proposed fully tensorial approach allows generation of random tensors in
any convenient coordinate system, which is in contrast to the existing
quasi-tensorial approach that only permits generation of random tensors
in the coordinate system corresponding to the principal directions of the
Euclidean mean stress tensor of the source sample of tensors.

The proposed fully tensorial approach provides a method that will
assist with probabilistic or reliability-based analyses of rock engineering
structures when considering the inherent variability of in situ stress.
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