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Abstract 
The spalling/failure of rocks often occurs at the underground opening surface during excavation activities, which may also be 
seriously affected by geological conditions such as joints and cracks. The nearby joints are usually filled with materials such 
as mortar or concrete to improve the stability of the opening surrounding rocks. To study the rock spalling/failure induced 
by a filled flaw, we adopt the weighted least squares material point method framework where a coupled Drucker–Prager 
plasticity and Grady–Kipp damage model is used to capture the mixed tensile-shear failure, and a particle-to-surface contact 
formulation is employed to model the contact interaction between the filled flaw and surrounding rocks. The framework is 
benchmarked using a series of cases involving circular opening, penny-shaped crack, and crack propagation, which shows a 
good agreement between the analytical, experimental, and numerical results. Simulations of plane strain compression tests 
for an arch-shaped tunnel opening under different geological conditions are also performed, where the rock spalling process 
is numerically reproduced by the sequential appearance of multiple cracks initiated from the opening surface. We show that 
the filling exacerbates the spalling at the tunnel left spandrel and induces new mixed shear-tensile cracks connected from the 
flaw toe to the tunnel corner, and massive collapse could occur at the tunnel left waist when the area formed by the spalling 
and band failure at the tunnel left spandrel and corner is connected to the filler. Our results suggest that our proposed MPM 
framework is an attractive alternative for the study of rock spalling/failure for underground openings.

Highlights 

•	 A coupled plasticity-damage MPM framework considering particle-to-surface contact is constructed.
•	 The effectiveness of the constructed MPM framework for rock spalling/failure simulation is confirmed.
•	 Spalling is reproduced by the sequential appearance of multiple cracks starting at the opening surface.
•	 The filling of nearby open flaws could exacerbate the spalling and cause even massive collapse.

Keywords  Rock spalling/failure · Filled flaw · Elastoplastic damage · Material point method (MPM) · Contact interplay

1  Introduction

The surface instability or failure of rocks adjacent to a free 
surface of underground openings such as deep tunnels or 
boreholes, particularly when subjected to high-stress con-
ditions, is often manifested as a spalling phenomenon. The 
rock spalling is formed by the cracks’ initiation, propagation, 
and coalescence, and the detachment of thin rock pieces near 
free surfaces. The mechanical processes depend on not only 
the high in situ stress field (Jacobsson et al. 2015; Vardoula-
kis and Papanastasiou 1988) but also the complex geological 
conditions such as joints, bedding planes, faults, and natural 
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weak interlayers (Huang et al. 2013; Mazaira and Konicek 
2015; Pan et al. 2020b; Zhuang et al. 2014). It was reported 
that the sudden slip of fault near the tunnel under excavation 
could trigger a series of rock burst events, then resulting 
in an instantaneous spalling/failure at the tunnel surface, 
and consequently leading to a geological disaster (Lee and 
Kim 2003; Zhang et al. 2012). Therefore, understanding the 
occurrence and formation of rock spalling/failure during 
excavation activities is critical to the design and safe con-
struction of underground openings, especially when there 
exist nearby faults.

There have been extensive experimental and theoreti-
cal studies on the spalling/failure of rock materials (Gong 
et al. 2018; Jacobsson et al. 2015; Kao et al. 2016; Mazaira 
and Konicek 2015; Papamichos et al. 1994; Tarokh et al. 
2016b). Much of the work has concentrated on identifying 
key factors influencing surface spalling behavior and has 
highlighted the importance of the geological environments 
of rock masses around an underground opening. Jeon et al. 
(2004) carried out scaled model tests to study the effect of 
faults, weak planes, and grouting on tunnel stability and 
observed that the existence of nearby geological disconti-
nuities furthers the surface deformation of tunnel side walls. 
The failure pattern of the tunnel crossing through a weak 
interlayer was explored in the same way where the inter-
layer’s location, dip, and thickness were considered (Huang 
et al. 2013). Song et al. (2018) adopted the 3D printing tech-
nology to establish fault-tunnel physical models to simu-
late nearby fault-induced tunnel spalling and collapse more 
accurately. As far as discontinuous faults or flaws are con-
cerned, research is mostly focused on open and closed frac-
tures without artificial fillings. To improve the surrounding 
rock stability, however, grouting and shotcrete technology 
are often applied where the nearby flaws are filled with mor-
tar, concrete, etc. to reinforce their mechanical resistance to 
further rupture propagation. Zhuang et al. (2014) performed 
uniaxial compression tests to investigate the influence of fill-
ing materials on the crack behavior and concluded that the 
filling of flaws changes the crack initiation stress and angle. 
In addition, the crack process and failure pattern of sand-
stone for cases with different filling materials and flaw incli-
nation angles were also examined (Miao et al. 2018). Moreo-
ver, Pan et al. (2020b) experimentally analyzed the spalling 
process of the hard rock tunnel nearby a flaw filled with dif-
ferent materials and found the tangential stress concentration 
induced by the pre-existing flaw induces the spalling/failure. 
Compared to the above experiments, however, numerical 
simulations can provide complementary information such 
as the accurate stress distribution and strain evolution for 
further insights into the spalling/failure.

The rock spalling/failure under unfavorable geological 
conditions was modeled and investigated using various 
numerical methods. Zubelewicz and Mroz (1983) used the 

finite-element method (FEM) to study the unstable dynamic 
failure of rock bursts. Shou (2000) developed a hybrid 
boundary element method (BEM) to analyze the nonlinear 
behavior of weak planes near underground excavations. 
Lee and Kim (2003) implemented a hybrid FEM–BEM 
technique for evaluating the effect of fault zones on tun-
nel movement during the construction process. Jiao et al. 
(2012) employed the discontinuous deformation analysis 
(DDA) method to simulate the fragmentation and collapse 
of an opening surrounded by jointed sandstone. The sur-
face spalling and crack propagation were also successfully 
modeled by the discrete-element method (DEM) (Fakhimi 
et al. 2002; Sagong et al. 2011; Tarokh et al. 2016a) and 
the numerical manifold method (NMM) (Li et al. 2018; Wu 
et al. 2018; Yang et al. 2016). In addition, Lisjak (2013) 
captured the formation of an excavation damage zone around 
an underground opening based on the combined finite–dis-
crete-element method (FDEM). It was observed that with 
the development of advanced computational methods used 
for modeling fracture behavior, numerical simulations 
have been playing a crucial role in the study of rock sur-
face spalling/failure. In general, however, the effectiveness 
of numerical techniques always needs to be verified and 
illustrated through comparison with physical experimental 
results, such as that done in References (Huang et al. 2013; 
Jeon et al. 2004; Zhuang et al. 2014). Recently, to reveal the 
intrinsic mechanism that controls tunnel spalling/failure, the 
elastoplastic cellular automaton (EPCA) code was applied 
in examining the stress concentration in the surrounding 
rocks while the physical experiments were conducted (Pan 
et al. 2020b). We notice that the opening peak-post large 
or discontinuous deformation and the contact interaction 
between filled flaw and sandstone were still not modeled, 
which inevitably affects the understanding of rock spalling/
failure induced by a nearby filled flaw.

The challenge of accurately modeling rock spalling/
failure mainly lies in the choice and implementation of a 
deformation regime and constitutive model of rock under 
loading and unloading conditions. In addition to the numeri-
cal methods mentioned before, the material point method 
(MPM) has the potential to achieve large or discontinuous 
deformation in the fracture process due to the continual grid 
resetting therein. The MPM has been successfully applied 
in the context of solid mechanics (Sulsky et al. 1995), fluid 
mechanics (York et al. 2000), soil mechanics (Bandara and 
Soga 2015; Hu et al. 2021; Liu et al. 2020), computer graph-
ics (Klár et al. 2016), fracture mechanics (Hu et al. 2022; 
Nairn 2018), etc. The method will probably help obtain the 
whole spalling process from continuous to discontinuous 
deformation. On the other hand, the focus is how to accu-
rately capture both shear and tensile fracture behavior in 
rock spalling/failure. Recently, the coupled Drucker–Prager 
(DP) plasticity and Grady–Kipp (GK) damage model has 
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proved successful in modeling mixed-mode fracture in the 
smoothed particle hydrodynamics (SPH) framework (Douil-
let-Grellier et al. 2016a). Following this, the proposed model 
was first incorporated into the MPM framework to simulate 
the failure of aggregate materials (Raymond et al. 2019) 
and then the shearing of polycrystalline materials (Raymond 
et al. 2021). For underground openings nearby a filled flaw, 
however, one needs to introduce a contact formulation in the 
coupled DP and GK MPM framework to explore the inter-
play between opening surface spalling and filler-induced 
pre-crack propagation.

This study aims to develop a coupled plasticity-damage 
MPM framework considering contact interaction between 
filled flaws and surrounding rocks for the numerical study 
of rock spalling/failure induced by a filled flaw. We first 
provide a detailed description of the implementation of the 
MPM (Sulsky et al. 1995) using the weighted least squares 
(WLS) approximation (Hu et al. 2018), where the frictional 
contact modeling is resolved with the penalty-based par-
ticle-to-surface (PTS) contact algorithm (Nakamura et al. 
2021). The coupled DP plasticity and GK damage model 
(Douillet-Grellier et al. 2016a; Raymond et al. 2019) is also 
presented. Then, we perform simulations of benchmark 
problems including circular opening, penny-shaped crack, 
and dynamic crack propagation under uniaxial compression 
to illustrate the effectiveness of the MPM framework built 
in this study. Finally, we analyze the failure patterns and 
profiles by tracking the spalling process of tunnels nearby 
a filled flaw and reveal the influence of the filled flaw on 
spalling/failure of the tunnel opening.

2 � MPM Using the WLS Approximation

2.1 � Governing Equations

We begin with the governing equations of the conservations 
of mass and momentum considering an updated Lagrangian 
framework, which are given as

where � is the mass density; � is the velocity; � is the 
Cauchy stress; � is the gravitational acceleration (9.81 m/s2); 
D�∕Dt = ��∕�t + � ⋅ ∇� denotes the material derivative of 
any field quantity �(�, t) . Before discretizing and solving 
the partial differential Eq. (2) via MPM, its strong form has 
to be transformed into a weak integral form on the problem 
domain Ω as in FEM (de Souza Neto et al. 2011). Thus, 

(1)
D�

Dt
+ �∇ ⋅ � = 0,

(2)�
D�

Dt
= ∇ ⋅ � + ��,

Eq. (2) is sequentially multiplied by an arbitrary test func-
tion � (i.e., virtual displacement field), integrated by parts, 
and reformulated by carrying out the divergence theorem 
and applying the boundary conditions as

where � = �� denotes the traction boundary condition with 
� indicating the unit normal to the domain boundary �Ωt.

2.2 � MPM Discretization

The MPM discretizes the problem domain into a set of 
Lagrangian material point particles, then interpolated at 
the connected nodes, and finally moves through a fixed 
Eulerian background grid where the solution is performed. 
Through the discretization, the problem domain Ω is addi-
tively decomposed into the corresponding particle domain 
contributions where each particle represents a finite Lagran-
gian domain Ωp whose properties (e.g., mass mp , volume 
Vp , velocity �p and its gradient ∇�p , Cauchy stress �p and 
its related material variables, position �p ) are being tracked 
(Burghardt et al. 2012), which is expressed as

where �p is the position vector of material particle p ; Np is 
the total number of material particles; � is the Dirac delta 
function. Substituting Eq. (4) back into Eq. (3), the following 
global discrete relation is established:

Same as that in the FEM, the field variables such as �p 
and ∇�p in the MPM are approximated by given shape func-
tions that interpolate nodal values, i.e.,

(3)
∫Ω

(𝜌�̇ ⋅ �)dΩ = ∫Ω

(� ∶ ∇�)dΩ + ∫Ω

(𝜌� ⋅ �)dΩ + ∫𝜕Ωt

(� ⋅ �)d𝜕Ωt,

(4)Ω(�, t) =

Np∑
p=1

Ωp�(� − �p),

(5)

Np∑
p=1

∫Ωp

(𝜌�̇ ⋅ �)dΩp =

Np∑
p=1

∫Ωp

(� ∶ ∇�)dΩp

+

Np∑
p=1

∫Ωp

(𝜌� ⋅ �)dΩp

+

Np∑
p=1

∫𝜕Ωtp

(� ⋅ �)d𝜕Ωtp

.

(6)�p =

Ni∑
i=1

�i(�p)�i,

(7)∇�p =

Ni∑
i=1

�i⊗∇𝜓i(�p),
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where Ni is the total number of grid nodes and �i(�p) is the 
interpolation functions evaluated at particle p . This allows 
those integrals in Eq. (5) to be locally approximated such 
that the discretized problem can be linearly solved. In this 
study, the WLS approximation is adopted to generate the 
specific shape functions, which can effectively resolve the 
inconsistent transfers of physical quantities when consider-
ing frictional contact (Hu et al. 2018; Nakamura et al. 2021). 
For a given �p , we construct its local approximation using a 
polynomial least squares method such that a target field hp(�) 
at any position � around �p can be expressed as

where �(�) = [1, x, y, z]T denotes the selected complete poly-
nomial basis in three dimensions (3D); �(�p) is the coef-
ficient vector calculated using the WLS minimizing the 
functional defined by Jp(�) ; wi(�p) is the localized weighting 
function that is chosen to be cubic B-splines in this study 
(Fig. 1a). The weight function and its kernel are defined as 
(Klár et al. 2016)

(8)hp(�) = �T (� − �p)�(�p),

(9)�(�p) = �−1(�p)

Ni∑
i=1

wi(�p)�i(�i − �p)hi(�p),

(10)�(�p) =

Ni∑
i=1

wi(�p)�
T
i
(�i − �p)�i(�i − �p),

(11)Jp(�) =

Ni∑
i=1

wi(�p)
[
�T
i
(�i − �p)�(�p) − hi(�p)

]2
,

where l is the grid spacing. By introducing the shape func-
tions �i(�p) , Eq. (8) can be rewritten as

where

Subsequently, using Shepard’s method (Shepard 1968), 
the local approximation hp(�) for a given �p is extended into 
the global approximation h(�) , which is defined as

(12)wi(�) = w̃
(x − xi

l

)
w̃
(y − yi

l

)
w̃
( z − zi

l

)
,

(13)w̃(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
2
|x|3 − |x|2 + 2

3
0 ≤ |x| < 1

1
6
(2 − |x|)3 1 ≤ |x| < 2

0 2 ≤ |x|
,

(14)hp(�) =

Ni∑
i=1

�i(�)hi(�p),

(15)�i(�) = wi(�p)�
T
i
(� − �p)�

−1(�p)�i(�i − �p).

(16)h(�) =

Np∑
p=1

�p(�)hp(�),

(17)�p(�) =
w(�p − �)mp

∑Nq

q=1
w(�q − �)mq

.
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Fig. 1   a Cubic B-splines weighting functions and their gradient and 
b PTS contact criterion (Nakamura et al. 2021), where the open and 
solid squares denote the active and inactive grid nodes when two bod-

ies are in contact, and the open and solid circles denote the contacted 
and uncontacted material points, respectively
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Eventually taking the well-defined WLS approximation, 
the final equation discretized by the MPM can be obtained 
by substituting Eqs. (6) and (7) into Eq. (5), which yields

where Mij is the consistent mass matrix and usually reduced 
to the lumped mass matrix mi through the justification of the 
special mass lumping technique from Hinton et al. (1976) 
that not only ensures the positive definiteness of the mass 
matrix (Li and Liu 2007) but also avoids the expensive 
matrix inversion (Bardenhagen and Kober 2004). Note that 
explicit time integration is used to solve the MPM equa-
tions for simulating quasi-static or slow-process problems 
in this study. Thus, the time step is required to be small 
enough to satisfy the stability condition and determined by 
Δt ≤ l

�
(vc + ‖�‖) where vc being the characteristic P-wave 

velocity.

2.3 � PTS Contact

We employ the PTS contact formulation proposed by Wang 
and Chan (2014) to simulate the frictional contact interaction 
between the MPM domain (particles) and structure (surfaces). 
With an emphasis on investigating the effect of filling mate-
rial on rock spalling of opening, the rigid structure represent-
ing the domain occupied by the filling material is used in this 
study. This algorithm possibly allows a material particle to 
partially penetrate the rigid structure, where a parameter factor 
� is introduced to define the amount of residual penetration 
( 0 ≤ 𝜒 < 1 where � = 0 implies zero penetration). Thus, the 
normal contact force is given by

(18)
Nj∑
j=1

Mij�̇j = � int
i

+ � ext
i
,

(19)Mij =

Np∑
p=1

mp�i(�p)�j(�p),

(20)mi =

Np∑
p=1

mp�i(�p),

(21)� int
i

=

Np∑
p=1

Vp�p∇�i(�p),

(22)� ext
i

=

Np∑
p=1

�i(�p)mp� + ∫�Ωt

�i(�)�d�Ωt,

where the value of 
(
dp − d0

)
 denotes the contact distance 

from the particle to the surface and dp − d0 < 0 when contact 
occurs, as shown in Fig. 1b; �nor

p
= (dp − d0)�p denotes the 

normal contact distance vector related to the unit normal 
�p from particle to surface; �nor

p
= 2mp

/
(Δt)2 is the penalty 

parameter derived by Newton’s second law of motion. On 
the other hand, the tangential or frictional contact force is 
given as

In the equation above, f tan(max)

i
= �con

‖‖‖�nori

‖‖‖ + Aconccon 
denotes the admissible maximum frictional contact force 
where �con and ccon are the frictional coefficient and cohe-
sion; Acon is the contacted area at node i that is evaluated as 
the value of grid spacing l in 2D or the area occupied by 
node i in 3D (i.e., grid cell area), which is constant owing to 
the fixed and regular background grid used in this study; 
�stick
i

= � stick
i

∕
‖‖‖� sticki

‖‖‖ denotes the unit tangential vector; 
� stick
i

= −mi�̃
tan
i

/
Δt denotes the tangential contact force cal-

culated by assuming no sliding between particle and surface 
where �̃tan

i
 is the tangential component of relative velocity 

between particle and surface and can be obtained as

where �nor
i

= �nor
i

∕
‖‖‖�nori

‖‖‖ denotes the unit normal vector; 
�i(�i) is the nodal velocity at the active grid node �i ; �

rigid

i
(�i) 

is the velocity at the position �i calculated by the distance 
from �i to the center of a rigid body, the velocity, and the 
rotational moment of the rigid body. Note that before the 
PTS contact calculation, the initial distance of particle used 
for the contact detection d0 and the parameter factor � con-
trolling residual penetration should be given. Lately, the PTS 
contact algorithm has been extended to the MPM frame-
work, and more details of implementation were provided by 
Nakamura et al. (2021).

(23)�nor
i

=

⎧
⎪⎨⎪⎩
−

Np∑
p=1

𝜓i(�p)(1 − 𝜒)𝜅nor
p

�nor
p

dp − d0 < 0

0 dp − d0 ≥ 0

,

(24)� tan
i

=

⎧
⎪⎨⎪⎩

f
tan(max)

i
�stick
i

����
stick
i

��� ≥ f
tan(max)

i

� stick
i

����
stick
i

��� < f
tan(max)

i

.

(25)�̃tan
i

= �̃i − (�̃i ⋅ �
nor
i
)�nor

i
,

(26)�̃i =

Np∑
p=1

𝜉p(�i)�i(�i) −

Np∑
p=1

𝜉p(�i)�
rigid

i
(�i),
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2.4 � Coupled DP Plasticity and GK Damage Model

We pursue the coupled DP plasticity and GK damage model 
to capture rock spalling/failure induced by the filling of a 
nearby flaw in the framework of weighted least squares 
material point method (WLS-MPM) with the PTS contact 
formulation. The constitutive calculation consists of three 
steps, namely an elastic trial step, a plastic corrector step, 
and a damage corrector step. First, the elastic trial stress 
is calculated using the generalized Hooke’s law where the 
incremental strain is imposed via an additive volumet-
ric–deviatoric decomposition, which yields

where G and K are the shear and bulk moduli, respectively. 
Then, substituting the elastic trial stress into the DP yield 
function, the stress state is decided. If the trial state is still 
in the elastic regime, the trial state is the true state and the 
constitutive calculation is terminated. Otherwise, the DP 
plastic corrector step is performed to return the trial stress 
to the yield surface. Afterward, the updated stress state is 
tested for tensile failure and then corrected using the GK 
damage model. In the following, we will briefly describe the 
DP plasticity and GK damage model.

2.4.1 � DP Plasticity

The DP yield criterion is used to predict the shear failure 
of rock from its trial elastic stress state, which is defined as 
(Zhang et al. 2016)

where � =
√
J2(�) is the effective shear stress; �m = I1(�)∕3 

is the mean stress; cmat is the cohesion of rock material. We 
adopt the DP yield surface passing through the outer apexes 
of the Mohr–Coulomb (MC) yield surface in the -plane. 
Thus, the parameters q� and k� are given by

where �mat is the friction angle of rock material. Meanwhile, 
a non-associated rule is applied to consider the dilatancy of 
frictional materials, resulting in the plastic potential function 
related to the dilatancy angle �mat and defined as

(27)�̇ = 2G�̇dev + K�̇vol,

(28)
𝛆̇ = 𝛆̇−tr(𝛆̇)𝐈∕3

���������
𝛆̇dev

+ tr(𝛆̇)𝐈∕3
���

𝛆̇vol

,

(29)�̇ =
1

2
[∇� + (∇�)T ],

(30)FP(�, �m) = � + q��m − k�cmat,

(31)q� =
6 sin�mat√

3(3 − sin�mat)
, k� =

6 cos�mat√
3(3 − sin�mat)

,

In addition, the associative isotropic strain softening 
given by Deb and Pramanik (2013) is considered by letting 
cmat be a piecewise linear function of the accumulated plastic 
strain �p , which is expressed as

where cmat(0) is the initial cohesion of rock material; �p(crit) is 
the critical plastic strain.

2.4.2 � GK Damage

We use the GK damage model to describe the tensile failure 
of rock material (Douillet-Grellier et al. 2016a; Grady and 
Kipp 1980; Raymond et al. 2019). In the model, the damage 
state is determined based on the effective tensile strain � and 
its threshold value �0

D
 , which is expressed as

where 𝜎̃max is the maximum principal stress under tension; 
V  is the volume of the material particle; m and k are the 
Weibull’s parameters controlling the fracture activation. If 
𝜀 > 𝜀0

D
 , damage occurs in the rock material, which is meas-

ured by the damage parameter D varying between 0 and 1 
and calculated by

where cg is the crack growth speed during dynamic failure 
and usually regard as 0.4 times the speed of sound cs in rock 
material. If D = 1 , tensile failure occurs, resulting in a zero-
stress state. Finally, the tensile component of the principal 
stress tensor is corrected by D , which yields

(32)F̃P(𝜏, 𝜎m) = 𝜏 + q𝜓𝜎m,

(33)q� =
6 sin�mat√

3(3 − sin�mat)
.

(34)

cmat(𝜀p) =

{
cmat(0)(1 − 𝜀p∕𝜀p(crit)) cmat(𝜀p) ≥ 0.1cmat(0)

0.1cmat(0) cmat(𝜀p) < 0.1cmat(0)

,

(35)FD(�, �
0
D
) = � − �0

D
,

(36)𝜀 = 𝜎̃max

/
(K +

4

3
G),

(37)�0
D
= (Vk)

−
1

m ,

(38)dD
1

3

dt
=

1

3
cg�

1

3 �
1

3 ,

(39)� =
8�k(m + 3)2

(m + 1)(m + 2)
,

(40)𝜎̃i ← (1 − D)𝜎̃i,
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where 𝜎̃i is the principal stress under tension that is ensured 
by 𝜎̃i ∈ [𝜎1, 𝜎3, 𝜎3] , and 𝜎̃i ≥ 0 . Next, the updated principal 
stress tensor is rotated back to the original coordinate frame 
to form the final total stress considering the strain damage.

2.5 � MPM Solution

This section provides the specific implementation proce-
dures of the MPM framework to be constructed. Recall that 
the motivation for this study is to numerically study the 
rock spalling/failure induced by a filled flaw. To this end, 
we implement the coupling of the DP plasticity model, the 
GK damage model and the PTS contact formulation within 
the WLS-MPM framework. We utilize the Euler explicit 
time integration scheme to solve the discretized governing 
equations in the framework. The computational cycle of the 
MPM is divided into the following main blocks, as sum-
marized in Fig. 2.

1.	 At Eulerian grid nodes. The computational Eulerian grid 
and material properties are defined and the variables at 
Lagrangian particles such as mass, volume, position, 
velocity, stress, and other material internal variables are 
initialized before proceeding here. Next, we compute the 
shape functions (Eqs. 14 and 15) constructed using the 
WLS local approximation and their gradient, and the 
lumped mass matrix (Eq. 20). Information is transferred 
from particles to grid nodes (P2G). Then, we calculate, 
respectively, the nodal internal forces (Eq. 21), body 
forces and nodal external forces (Eq. 22). In addition, 
the normal and tangential contact forces after employing 
the PTS contact algorithm are also calculated (Eqs. 23 
and 24). Finally, we solve the discretized momentum 
equation to obtain the nodal velocities (Eq. 18).

2.	 At Lagrangian particles. First, we transfer the nodal 
velocities from the Eulerian grid to particles (Eq. 6), 
and further update the positions of particles (G2P). 
After this, the computational grid is reset. It needs to 
be noticed that following the modified update stress last 
(MUSL) scheme (Sulsky et al. 1994) the nodal veloci-
ties are updated using the WLS global approximation 
(Eqs. 16 and 17). With that, the incremental strain is 
evaluated. Next, we perform the constitutive calculation 
involving DP plasticity (Eqs. 30–34) and GK damage 
(Eqs. 35–40). See Deb and Pramanik (2013) for more 
implementation details on the DP plasticity model 
including strain softening. From this, the total stress is 
updated. Finally, we enter the next time step and repeat-
edly execute the above computational cycle.

3 � Simulations of Benchmark Problems

To demonstrate the effectiveness of the proposed MPM 
framework introduced above, we perform a set of benchmark 
simulations. The first is the circular opening problem com-
monly tested for opening-induced elastic stress and displace-
ment redistribution in subsurfaces under high in situ stress. 
The benchmark is useful for validating the ground responses 
after the excavation of underground openings. The second 
is the well-known penny-shaped crack problem in the field 
of fracture mechanics which aims to benchmark the stress 
distribution near the tip of the pre-existing crack, and then 
the new cracks’ initiation and propagation. The last one is 
the crack propagation problem under uniaxial compression 
used for demonstrating the ability to capture both shear and 
tensile failure and model the interplay between filler and the 
pre-existing crack.

Initialization of quantities

Computation of lumped mass matrix

Calculation of nodal forces

Solving governing equations

Update of nodal velocities

Update of velocity and position

Calculation of GK damage

Calculation of DP plasticity Calculation of PTS contact forces 

Calculation of incremental strain

Computation of WLS shape functions

Update of total stress

P2G

G2P

MUSL

Particles Grid (cells)

Fig. 2   The computational flow of the coupled DP plasticity and GK damage MPM framework involving the PTS contact algorithm
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3.1 � The Circular Opening Problem

This section compares the results of the MPM simulation by 
this study and the analytical solution from Howard and Fast 
(1970) in the case of circular opening. Figure 3 shows the 
geometry and boundary conditions of the circular opening 
problem under plane strain assumption (Nasehi and Mor-
tazavi 2013). In this case, a circular opening with a 0.2 m 
diameter is cut onto a 5.0 m × 5.0 m plane strain section; 
the horizontal and vertical effective compressive stresses, 
namely �xx = 20 MPa, and �yy = 10 MPa, are applied to the 
boundary surfaces. The elastic properties of the rock mate-
rial used are given as follows: Young’s modulus E = 22.41 
GPa, Poisson’s ratio � = 0.2313, and density � = 2500 kg/m3.

For this problem, the analytical solution for the stress 
field with the assumption of an infinite isotropic elastic 
medium is given by Howard and Fast (1970):

where �r and �� are the radial and tangential stresses; �H 
and �h are the major and minor far-field principal stresses, 
namely �H = max(�xx, �yy) , and �h = min(�xx, �yy) ; � is the 
angle measured counter-clockwise from the �H direction; r is 
the distance from the center of the opening; a is the radius of 
the circular opening; P is the pressure acting on the opening 
surface and usually the injected fluid pressure and is equal to 
zero in this study. In addition, the MPM framework proposed 
by this study is used to numerically solve the circular open-
ing problem. In the model, the grid spacing is 0.01 m, and 
two material particles in each coordinate direction are set per 
grid cell, and thus a total of 998,696 particles are created.

Figure 4 shows the stresses obtained from the analytical 
calculations and the MPM simulations. In addition, the elas-
tic stress field obtained using the MPM is depicted in Fig. 5. 
To verify the MPM for elastic results, the horizontal ( �xx ) 
and vertical ( �yy ) stress distributions at two locations are 
extracted: (a) �xx = ��(� = 0◦) and �yy = �r(� = 0◦) along 
the x direction through the circular opening (Fig. 4a); (b) 
�xx = �r(� = 90◦) and �yy = ��(� = 0◦) along the y direc-
tion through the circular opening (Fig. 4b). As shown in 
Fig. 4, the measured results in the simulation agree well 
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Fig. 3   Schematic of the circular opening problem
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Fig. 4   Comparison between the stresses (σxx and σyy) obtained from 
the MPM simulation (open shapes) and the analytical solution (solid 
lines) of the circular opening problem: a along the x direction through 

the circular opening (y = 2.5 m) and b along the y direction through 
the circular opening (x = 2.5 m)
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with the analytical solutions. The only less desirable one in 
comparison occurs near the circular opening and the outer 
boundaries, primarily reflected in the radial stress. This is 
mainly caused by the difference between the MPM discre-
tization of the circular opening and its exact representation 
in analytical calculations, which probably leads to the stress 
concentration. The error between the two results is expected 
to decrease with increasing spatial discretization resolution 
in the MPM, similar to that from Douillet-Grellier et al. 
(2016b) where the mesh-free SPH is applied.

3.2 � The Penny‑Shaped Crack Problem

The case for the validation of the constructed MPM frame-
work in correctly predicting the tensile failure of rock 
material is the penny-shaped crack problem, where the 
particles in two layers of grid cells along the crack length 
are designated to be deleted as the initial crack. Figure 6 
shows the geometry and loading conditions of the problem 
where the plane strain state is assumed. In this case, a 
line crack with a 0.4 m length is cut onto a 5.0 m × 5.0 m 
section; there are no external loads applied to the rock 
material but the line crack is pressurized with a constant 
P = 15 MPa or 75 MPa. In addition to the elastic properties 
same as those used in the circular opening problem, the 
plasticity and damage properties are given here: friction 
angle �mat = 32.5°, dilatancy angle �mat = 8.125°, cohe-
sion cmat(0) = 24.8 MPa, critical plastic strain �p(crit) = 0.1, 
Weibull’s parameters k = 1.1798 × 1029 and m = 7.5. Using 
the MPM, two simulations are performed: one only consid-
ering the elastic behavior under loading with P = 15 MPa, 
and the other considering the elastoplastic damage evolu-
tion during loading with P = 75 MPa. The grid spacing 
is 0.02 m, and 249,840 particles are created. As a com-
parison, the analytical solution for the penny-shaped crack 
problem in 2D under constant pressure is given by Sned-
don (1946) and Douillet-Grellier et al. (2017):

(43)uy(x, 0) =
�
1 − �2

�2P
E

√
c2 − x2

�
1 −

�
1 −

a2

c2

�
,

Fig. 5   a Horizontal and b vertical stresses obtained from the MPM simulation of the circular opening problem

Fig. 6   Schematic of the penny-shaped crack problem
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where uy is the vertical displacement; x is the distance from 
the center of the line crack; 2a and 2c are the pressurized 
length and initial geometrical length of the line crack, 
respectively.

To validate the linear elastic fracture behavior of our pro-
posed MPM model, only the elastic behavior is considered 
in the first simulation ( P = 15 MPa). We extract the vertical 
displacement and stress distributions along the initial line 
crack. Figure 7 shows the comparison of these MPM results 
to the analytical results, and more detailed elastic responses 
resulting from the pressurized crack using MPM are depicted 

(44)

�xx(x, 0) = �yy(x, 0) = P

�
x√

x2 − c2
− 1

�
, �xy(x, 0) = 0,

in Fig. 8. The vertical displacement shows an elliptical shape 
along the line crack (Fig. 7a), which is consistent with the 
elliptical assumption in the analytical derivation. Generally, 
stress concentration occurs at the crack tip. However, an 
infinite value for stress is not allowed in numerical calcula-
tions. As a result, the crack-tip stress by the MPM is much 
smaller than that tends towards infinity by the analytical cal-
culations, as seen in Fig. 7b. The resulting reduction in the 
tensile resistance of rock material at the crack tip leads to the 
discrepancies that uy by the MPM is slightly greater near the 
crack tip and smaller at the center of crack, as seen in Fig. 7a. 
At present this is almost inevitable in numerical simulations 
and does not preclude the applicability of MPM in complex 
fracture modeling. Nevertheless, the MPM simulated results 
agree well with the analytical solution, which demonstrates 
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Fig. 8   a Vertical displacement and b stress obtained from the MPM simulation of the penny-shaped crack problem only considering elastic 
behavior
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the capability of our proposed MPM for capturing the elastic 
fracture behavior of the pressurized crack.

To further investigate the cracks’ initiation and propa-
gation, we consider the elastoplastic damage behavior in 
the second simulation ( P = 75 MPa). In the simulation, the 
load is gradually applied in the time interval from t = 0 s to 
t = 0.5 s; the parameter D reflecting tensile damage is moni-
tored all the time ( 0 ≤ D ≤ 1 , D = 0 denotes elastic or plastic 
undamaged, and D = 1 denotes failure under tension, respec-
tively); the number of background grid cells penetrated 
is used to measure the distance of crack propagation Δa , 
namely 1 cell = 0.02 m. In Fig. 9, we show the damage fields 
for the rock domain with a pressurized crack at t  = 0.05 s, 
0.1 s, 0.2 s, and 0.4 s, respectively. It is observed that the 
new tensile cracks are initiated at the tip of the initial line 
crack (Fig. 9a) and then grow symmetrically outwards. The 
crack propagation distance Δa gradually increases over time 

t or loading pressure P , having gone from 7 to 22 cells and 
then 72 cells (Fig. 9b–d). The damaged but unfilled areas 
(0 < D < 1) are mainly located near the tip of new cracks, 
which implies the subsequent tensile crack propagation. Fur-
thermore, plasticity never happens during the whole loading 
process. These observations confirm that the proposed MPM 
framework can capture the initiation and propagation of ten-
sile cracks, and the evolution from elasticity to damage and 
then failure regimes.

3.3 � The Crack Propagation Problem

In this section, we apply the constructed MPM framework 
to simulate the mixed tensile-shear failure and the interplay 
between filler and specimen in uniaxial compression tests. 
First, we focus on the MPM simulation of uniaxial com-
pression of sandstone specimens with an open flaw. The 
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Fig. 9   Initiation and propagation of tensile cracks during continuous loading



	 S.-G. Ai, K. Gao 

1 3

schematic of the uniaxial compression test conducted by 
Miao et al. (2018) is shown in Fig. 10a. In the test, a 50 mm 
× 150 mm sandstone specimen with an open flaw is pre-
pared; the open flaw is 25 mm in length and 2 mm in width, 
and has a 30° inclination angle to the horizontal direction; 
free-slip boundary conditions are imposed at the top and bot-
tom of the specimen; the sample is loaded under a constant 
velocity of 0.1 m/s with a rigid upper platen. The common 
material properties used here follow the ones given by Miao 
et al. (2018): Young’s modulus E = 9.87 GPa, Poisson’s ratio 
� = 0.22, density � = 2520 kg/m3, friction angle �mat = 38°, 
dilatancy angle �mat = 9.5°, and cmat(0) = 13.0 MPa. The dam-
age-related parameters are obtained from Raymond et al. 
(2019): critical plastic strain �p(crit) = 0.1, Weibull’s param-
eters k = 7.0 × 1035, and m = 9.0. Note that the background 
grid must be fine enough to generate the real geometry for 
the flaw explicitly. In this study, the width of the flaw always 
has to be more than twice the grid spacing. In the MPM 
model, the grid spacing is 0.5 mm, and 79,294 particles are 
created.

Figure  11a compares the uniaxial compression 
stress–strain curves obtained from the MPM simulation 
and the experimental results by Miao et al. (2018). The 
mechanical responses exhibited by the MPM model and the 
experiment are very similar qualitatively but when near the 
peak failure, the axial stress values are different. Compared 
to the experiment, the MPM simulation leads to smaller 
peak stress. This difference arises due to the upper free-slip 

boundary being impossible to achieve in the physical experi-
ment. More horizontal displacement is observed in the post-
failure MPM specimen. Moreover, plastic softening occurs 
before the peak stress is reached during the MPM simula-
tion. Figure 11b shows the evolution of accumulated plastic 
strain �p and damage D with loading time. The tensile failure 
first initiates at the tip of the pre-existing flaw and grows up 
to the wing cracks. With the continuous loading, the tensile 
and shear horsetail cracks, and the tensile anti-wing and 
oblique secondary cracks appear successively until the sam-
ple is penetrated by the cracks, as shown in Fig. 12a, b. The 
dominant crack propagation paths are partially consistent 
with the experimental results shown in Fig. 12c. The crack 
types are summarized in Fig. 12d, which are the same as 
Park and Bobet (2009) and Pan et al. (2020a). This confirms 

Fig. 10   Schematic of sandstone specimens under uniaxial compres-
sion (Miao et al. 2018): a with an open flaw and b with a rigid-filled 
flaw

Fig. 11   Crack evolution for the sandstone specimen with an open 
flaw under uniaxial compression: a comparison between the axial 
stress–strain curves obtained from the MPM simulation and the 
experimental results (Miao et  al. 2018); b evolution of damage (D) 
and accumulated plastic strain ( �

p
)
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that the MPM can capture the mixed tensile-shear fracture 
behavior correctly.

Second, we systematically investigate how the differ-
ent contact frictions between filler and sandstone may 
influence the crack behavior of sandstone specimen with 
a rigid-filled flaw under uniaxial compression (Fig. 10b). 
Figure 13 shows the uniaxial compression stress–strain 
curves under different contact friction coefficient �con and 
cohesion ccon . In the process of uniaxial compression, 
the sandstone around the pre-existing flaw is gradually 
in contact with the rigid filler, and a frictional contact is 
motivated to hinder the sequential deformation. This is 
confirmed by inspection of the distributions of 𝜎̃max around 
the pre-existing flaw. From Fig. 14a, the area near the open 

flaw is under tension and tends to have tensile failure due 
to its extremely high 𝜎̃max . Instead, the area near the rigid-
filled flaw is under compression, as shown in Fig. 14b. In 
general, greater 𝜎̃max mainly distributes at the tip of new 
cracks. The contact interaction between the filler and sand-
stone after the filling plays a dominant role in the increase 
of peak stress. In addition, the failure patterns changes 
due to the filling that the coplanar secondary and tertiary 
tensile cracks newly appear, as shown in Fig. 14c, d.

In addition to the normal contact support from the rigid 
filler, the tangential contact force also has a positive effect 
due to the 30º inclination angle. As shown in Fig. 13, the 
increase of �con between the filler and sandstone enhances 
the peak stress but that is not the case regarding ccon . With 
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results by Miao et al. (2018); d crack types observed in the MPM simulation by this study

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

Filler-Sandstone
µcon = 0.0

µcon = 0.2

µcon = 0.4

µcon = 0.6

µcon = 0.8

µcon = 1.0

Axial strain (%)

Ax
ia

l s
tre

ss
 (M

Pa
)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25
Filler-Sandstone

ccon = 0.0 MPa

ccon = 5.0 MPa

ccon = 7.5 MPa

ccon = 10.0 MPa

Axial strain (%)

Ax
ia

l s
tre

ss
 (M

Pa
)

(a) (b)
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the increase of ccon , the axial strain at peak failure slightly 
increases. For the cases considering �con , we set ccon = 0, 
resulting in f tan(max)

i
= �con

‖‖‖�nori

‖‖‖ . When �con is relatively 
small ( ‖‖‖� sticki

‖‖‖ ≥ f
tan(max)

i
 ), slip contact occurs and then the 

tangential contact force is influenced by the variation of �con . 
Similarly, for the cases considering ccon , we set �con = 0, 
resulting in f tan(max)

i
= Aconccon . When ‖‖‖� sticki

‖‖‖ < f
tan(max)

i
 , 

stick contact occurs and the tangential contact force only 
depends on � stick

i
 . From Fig. 13b, the stick contact state 

always remains when ccon > 5.0 MPa. Overall, the improve-
ment of tangential frictional contact on the stability of the 
flawed specimen is not as great as expected. This may be due 
to the fact that the contact surfaces between the filler and 
sandstone after the filling are not precisely modeled in the 
MPM simulations, which is reflected in the scattered stress 
concentrations around the rigid filler shown in Fig. 15. It is 
worth noting that the discretization method commonly used 
in mesh-free methods is adopted where the geometry of con-
tact interface is modeled by the particles in the regular grid 
cell, which usually results in rough surfaces for irregularly 
placed structures.

4 � Simulations of Rock Spalling/Failure

On top of the benchmarks conducted above, in this section, 
we continue to investigate the mechanism of rock spalling/
failure around an underground opening under different geo-
logical conditions, with the purpose of thoroughly testing 
the applicability and effectiveness of our proposed MPM 
framework. Three tunnel opening models are considered: 

(a) without flaw, (b) with a nearby open flaw, and (c) with a 
nearby rigid-filled flaw. We use the constructed MPM frame-
work to simulate the whole failure process of those mod-
els under plane strain compression. A series of plane strain 
compression tests were conducted by Pan et al. (2020b) 
on the spalling process of the tunnel. The schematic of the 
arch-shaped tunnels considered is shown in Fig. 16. Follow-
ing Pan’s experiments, an arch-shaped tunnel made up of 
40 mm × 25 mm rectangle and 20 mm radius semicircular 
areas are cut within a 150 mm × 150 mm sandstone speci-
men (Fig. 16a); a 60 mm × 2 mm open flaw adjacent to the 
tunnel is first cut (Fig. 16b) and then filled with rigid mate-
rial (Fig. 16c); free-slip boundary conditions are imposed 
at the four sides of the specimen; a rigid upper platen is 
used to load the samples in a constant downward velocity of 
0.1 m/s at the top. Similarly, the damage parameters from 
Raymond et al. (2019) are still used here, and the material 
properties are provided by Pan et al. (2020b) as follows: 
Young’s modulus E = 18.4 GPa, Poisson’s ratio � = 0.12, 
density � = 2364 kg/m3, friction angle �mat = 39°, dilatancy 
angle �mat = 9.75º, and cmat(0) = 25.0 MPa. The spacing of the 
background grid is 1.0 mm, and the specimens without flaw 
and with an open flaw are modeled using 83,430 and 83,003 
particles, respectively.

The axial stress–displacement curves for the tunnels 
under the three geological conditions are shown in Fig. 17. 
Qualitatively, the axial stress increases with increasing axial 
displacement and its increase tends to ease up at the later 
loading stage; the peak stress does not appear; the axial 
stress decreases at a certain level due to the nearby open 
flaw but increases due to the filling of open flaw. These 
are similar to that revealed by the experiments in Pan et al. 

Fig. 14   The maximum principal stress under tension is extracted for 
comparison: a sandstone specimen with an open flaw; b sandstone 
specimen with a rigid-filled flaw. Post-failure results (t = 0.006 s) for 

the rigid-filled sandstone specimen (μcon = 0.6, ccon = 0  MPa) under 
uniaxial compression: c shear cracks; d tensile cracks
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(2020b). At the initial loading stage, the axial stress signifi-
cantly increases with axial displacement for the case with a 
rigid-filled flaw. It can be attributed that the stress concen-
tration occurring at the two ends of the rigid filler is rapidly 
initiated, which reduces the stress transmission path from 
the upper platen to the bottom platform. Figure 18 shows 
the evolution of accumulated plastic strain with loading 
time and the post-failure results for the model without flaw. 
First, the symmetric distributed tensile cracks appear at the 
bottom of the tunnel prior to the initiation of mixed shear-
tensile cracks around the two sides of the tunnel, as shown 
in Fig. 18d. This can serve as a contribution to recognizing 
the in situ stress state of the tunnel.

Second, the plastic strain is symmetrically distributed at 
t = 0.008 s and the two plastic areas are in triangular shapes 
(Fig. 18a). The plastic shear bands with an inclination angle 
of about 55° are localized at t = 0.012 s and shifted upwards 
(Fig. 18b), which are also accompanied by tensile failures 
(Fig. 18d). This lead to smaller plastic-wrapped areas, which 
could cause the tunnel spalling/failure. With continuous 
loading, new shear cracks appear at t = 0.02 s. The sequen-
tial appearance of multiple cracks initiated from the opening 
surface is the spalling process. Third, the distributions of 
maximum principal stress under tension and displacement 
in the x and y directions also can reflect the spalling area of 
the tunnel (Fig. 18e–g). The distinguishable responses are 
mainly distributed near the opening surface, specifically at 

Fig. 15   Stresses (t = 0.006 s) for the rigid-filled sandstone specimen (μcon = 0.6, ccon = 0 MPa) under uniaxial compression
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Fig. 16   Schematic of the arch-shaped tunnels under axial displacement loading (Pan et al. 2020b): a without flaw, b with a nearby open flaw, and 
c with a nearby rigid-filled flaw
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the tunnel waist. The corresponding experimental results in 
Pan et al. (2020b) are also presented in Fig. 18h for com-
parison, and the similarity between our MPM results and 
those in Pan et al. (2020b) demonstrates the effectiveness 
of the MPM simulation for rock spalling/failure simulation.

To analyze the influence of the open flaw and the rigid-
filled flaw on rock spalling/failure, we present in Fig. 19 the 
post-failure results for the two models under plane strain 
compression. The spatial distributions of shear and ten-
sile cracks change greatly due to the nearby flaw, which is 
obviously no longer symmetric. The open flaw hinders the 
transferring of loads from the top to the area at the tunnel 

left waist, however, which results in the stress concentration 
occurring at the flaw toe and then the anti-wing shear crack 
(Fig. 19a). This is consistent with the experimental results 
in Pan et al. (2020b) presented in Fig. 19d. In addition, this 
spalling area can be observed by the displacement field in 
the x direction shown in Fig. 19c. In Pan’s experiments, the 
stress concentration induced by an open flaw is somewhat 
alleviated with different filling materials. However, for the 
case with a rigid-filled flaw simulated in this study, the 
spalling at the tunnel left spandrel is exacerbated and the 
new mixed shear-tensile crack connected from the flaw toe 
to the tunnel corner is triggered, as shown in Fig. 19e, f.

The difference between the two arises from the rigid filler 
serving as a load transfer medium by means of contact with 
the surrounding sandstone. Meanwhile, the filling with rigid 
materials introduces extreme material heterogeneity, which 
could lead to a more serious stress concentration and even 
severe failure such as the newly connected crack. These 
causes could occur in the grouting process for the filling of 
pre-existing open flaws. Thus, grouting is applied to fill the 
nearby open flaw for tunnel stability while simultaneously 
concerning the grouting pressure and the mechanical prop-
erties of filling material. In addition, when the spalling and 
band failure at the tunnel left spandrel and corner propagate 
towards the rigid-filled flaw until the failure area is simulta-
neously connected, the massive collapse occurs at the tun-
nel left waist, as shown in Fig. 19g. The spalling profiles 
occurred at the tunnel right waist and the tunnel left corner 
are also revealed in the experiment (Fig. 19h). All these 
observations suggest that the proposed MPM framework is 
appropriate and applicable to rock spalling/failure simula-
tions induced by a filled flaw.
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Fig. 17   Axial stress–strain curves for the tunnels under different geo-
logical conditions

Fig. 18   Spalling evolution and post-failure results for the tunnel with-
out flaw: a–c accumulated plastic strain at t = 0.008  s, 0.012  s and 
0.02  s, respectively; d damage; e maximum principal stress under 

tension; f, g displacement in the x and y directions, respectively; h 
experimental results by Pan et al. (2020b)
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5 � Conclusions

In the present paper, we have successfully constructed a 
WLS-MPM framework for the simulation of rock spalling/
failure induced by a filled flaw. In the framework, the cou-
pled DP plasticity and GK damage model is used to cap-
ture the mixed tensile-shear failure in the spalling/failure 
of underground openings, and the PTS contact formulation 
is employed to model the contact interaction between pre-
existing filled flaws and surrounding rock. We benchmark 
the framework on a series of classical problems. The elastic 
stress response by the MPM framework agrees well with 
analytical solutions for the circular opening problem. For 
the penny-shaped crack problem, compared to analytical 
solutions and experimental observations, the elastic fracture 
behavior, the initiation and propagation of the tensile crack, 
and the evolution from elasticity to damage are accurately 
captured by the MPM framework. The MPM simulations 
and experimental results are compared with uniaxial com-
pression tests, which confirms that the MPM framework can 
simulate the mixed tensile-shear failure and the interplay 
between rigid filler and surrounding materials correctly.

We have also performed simulations of plane strain 
compression tests for arch-shaped tunnel openings under 
different geological conditions to investigate the influence 
of rigid-filled flaws on rock spalling/failure. Using the pro-
posed MPM framework, the spalling process is numerically 
reproduced by the sequential appearance of multiple cracks 
initiated from the opening surface. The open flaw results 
in the stress concentration at the flaw toe and subsequently 

the anti-wing shear crack, which was also observed by Pan 
et al. (2020b). Due to the filling of the nearby open flaw, the 
spalling at the tunnel left spandrel is exacerbated and the 
new mixed shear-tensile crack connected from the flaw toe 
to the tunnel corner is induced. When the area formed by 
the spalling and band failure at the tunnel left spandrel and 
corner is connected to the filler, a massive collapse could 
occur at the tunnel left waist.

In addition, we notice that the deformation of filler and 
grouting pressure into the open flaw are other key factors 
influencing the spalling/failure of underground openings, 
which are not considered in this study. Nevertheless, the 
presented MPM framework generalizes the coupled plastic-
ity-damage large deformation mechanics for diverse fracture 
processes such as tensile, shear and mixed failure, which has 
been extended to resolve filler-induced spalling phenomena 
by introducing PTS contact algorithm in this study and fur-
ther deformable contact formulation in future works. Simi-
larly, the framework can be easily adjusted to incorporate 
other rock fracturing related simulations, such as hydraulic 
fracturing by appropriate treatment of strong discontinuity 
and fluid flow in fractured rocks. Our results provide a con-
venient framework for multiphysics fracture modeling, with 
potential applications in areas such as fracture propagation 
simulations during grouting in nearby open flaws for under-
ground opening stability.
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Fig. 19   Post-failure results for the tunnels with a nearby open flaw (top panels) and a rigid-filled flaw (bottom panels): a, e accumulated plastic 
strain; b, f maximum principal stress; d, g displacement in the x direction; d, h experimental results by Pan et al. (2020b)
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