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Abstract
The combined finite-discrete element method (FDEM) has been widely used to simulate the rock fracturing process. However, 
the penalty-based contact interaction algorithm commonly utilized in FDEM is element size-dependent, which may yield 
artificial non-smoothness and abrupt jump of contact force. Specifically, the amplitude and direction of the obtained contact 
force between two contacting blocks can vary even when their overlap area is unchanged. To circumvent the limitations, we 
establish a unified distance potential field using the boundary node lists to calculate contact forces and consider the update 
of the local distance potential field when new fractures are generated. The proposed algorithm not only ensures momentum 
and energy conservation but also avoids the dependence of contact force on element size, which is thus suitable for any 
complex cases. The effectiveness and robustness of the proposed method for contact interaction between discrete bodies are 
verified, and its advantages are demonstrated. Finally, we present two application examples to demonstrate the capability of 
the proposed approach for evaluating rock slope stabilities when multi-block contact is involved. The work provides a new 
effective solution to analyze discontinuous computation models associated with complex rock mass systems.

Highlights

• We propose a 2D contact algorithm for FDEM based on a unified distance potential field.
• The unified distance potential field can be established using the boundary node lists.
• The distance potential field can also be updated when new fractures are generated.
• The proposed approach can avoid the dependence of contact force on element size.
• The accuracy of the proposed approach is verified and application examples are provided.

Keywords Combined finite-discrete element method (FDEM) · Contact force · Penalty function method · Unified distance 
potential field · Energy-conserving contact model

1 Introduction

Due to the presence of intermittent joints with different ori-
entations and spacing, the rock masses are usually cut into 
arbitrary polygonal (convex or concave) blocks with vari-
ous configurations (Zhou and Chen 2019). In the excavation 
processes of many rock engineering projects, such as rock 
slopes (Hatzor et al. 2004), underground mining (Regassa 
et al. 2018) and tunneling (Wu et al. 2018), the contact 
interaction between individual blocks with complex shapes 
has significant influences on the stability of rock mass sys-
tems. Therefore, accurate assessment and prediction of rock 
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block collisions are crucial for the safety of rock engineering 
construction.

As a powerful complement to analytical and experimen-
tal methods, numerical simulations, owing to their rapid-
ity and convenience, have been extensively employed in 
recent years to describe the process of contact and colli-
sion of rock mass systems (Feng and Owen 2004; Gao and 
Feng 2019; Wang et al. 2021; Zheng et al. 2020a). Gener-
ally, according to the formulations of governing equations, 
contact approaches can be roughly classified into explicit 
and implicit categories (Zhao et al. 2018b). The most rep-
resentative explicit approach is the discrete element method 
(DEM) proposed by Cundall and Strack (1979), which can 
explicitly simulate the complex contact interactions of dis-
crete bodies even using simple constitutive models for the 
bonds compared with the finite element method (FEM). 
During the past thirty years, the commercial PFC (Particle 
Flow Code) software developed based on particle DEM has 
broad applications in brittle rock-related simulations owing 
to its simplicity of geometry and efficiency in contact detec-
tion. This method is not required to identify complex contact 
types. However, due to the lack of highly interlocked grain 
structures, the circular/spherical bodies utilized in PFC fail 
to simulate rocks with low strength ratios of tensile to uni-
axial compressive strength (UCS) and high macro friction 
coefficients (Potyondy and Cundall 2004). To address this 
problem, a Flat-Joint Model was subsequently implemented 
in PFC to eliminate the particle rotation after breakage and 
enhance the interlock between adjacent particles, which has 
been successfully used in quantitative investigations of rock 
fracturing (Duan et al. 2021; Potyondy 2018). To accurately 
capture the particle shape, another commercial software 
UDEC based on the block DEM was developed, and the 
common plane (CP) method was proposed to deal with the 
various categories of contact scenarios, such as vertex-to-
vertex, vertex-to-edge, and edge-to-edge contacts (Cundall 
1988). However, this method yields an incomplete contact 
interaction algorithm due to the lack of a unified mechani-
cal model for different contact cases (Zhao et al. 2018b). 
Particularly, for the vertex-to-vertex contact, the direction of 
normal contact force may encounter discontinuity and non-
smoothness at the corner of polygon bodies, thereby causing 
local stress oscillation. Recently, as an alternative to UDEC, 
the Subspring Network contact model has been proposed to 
overcome the issues associated with circular particles, which 
also considers grain breakage and produces heterogeneity-
induced local tension (Potyondy and Fu 2024).

The discontinuous deformation analysis (DDA), which 
adopts the implicit scheme to update the location and veloc-
ity of blocks, was first introduced by Shi and Goodman 
(1985) based on the minimum potential energy principle. 
In DDA, an open-close iteration scheme is used for contact 
detection, which repeatedly fixes and removes normal and 

tangential springs between rock blocks (Zhao et al. 2018b). 
Consequently, the frequent variation of contact stiffness will 
significantly affect the stability of numerical modeling and 
reduce computational efficiency. Furthermore, similar to 
block DEM, DDA fails to guarantee a smooth transition of 
normal contact force direction under continuous movement 
of contact pairs. In addition, the implicit schemes require 
stable convergence of contact states, which may significantly 
increase the computation cost, especially for highly nonlin-
ear dynamic impact problems (Zhao et al. 2018b; Zheng 
et al. 2020b).

In recent years, various improvements and efforts have 
been made to circumvent the deficiencies in the approaches 
mentioned above (Feng 2021a, b, c; Lai et al. 2022; Lei 
et al. 2020; Mathias et al. 2021; Nassauer and Kuna 2013; 
Zhao et al. 2018a). In these improvements, the magnitude 
and direction of contact force can be determined by the 
contact areas/volumes and the gradient of contact poten-
tial, respectively. These methods not only guarantee energy 
conservation in the process of elastic collision for arbitrarily 
shaped polygons/polyhedra but also can quickly determine 
the direction of normal contact force and the contact point 
(where the contact forces should be applied and according 
to which the total moment is zero). Among them, the com-
bined finite-discrete element method (FDEM) (Munjiza 
1992), which merges FEM-based analysis of continua with 
DEM-based contact processing for discontinua, provides 
an effective solution to handle complex contact or dynamic 
impact problems by meshing arbitrarily shaped polygons/
polyhedra into an assembly of triangular/tetrahedral finite 
elements (Latham et al. 2019; Munjiza 2004).

In FDEM, the potential-based penalty function method 
was revolutionarily proposed to calculate the magnitude of 
normal contact force, and its direction can be directly deter-
mined by the gradient of contact potential (Munjiza 2004). 
Thus, the definition of contact potential plays a significant 
role in accurately measuring the penetrations between con-
tact pairs. In the original form of FDEM, each 2D contac-
tor triangular element is divided into three sub-triangles 
according to the location of the contact point, and the con-
tact potential can be defined as the minimum shape functions 
at the contact point in the corresponding sub-triangle (Lei 
et al. 2020). Based on Green’s formula, the calculation of 
the normal contact force of the contact area can be simpli-
fied into the integral of the potential on the boundary of the 
contactor element, and the direction of normal contact force 
can also be directly obtained based on the outward normal 
direction of element boundary (Munjiza 2004).

Nevertheless, two issues remain in the potential-based 
penalty function method. First, since the definition of poten-
tial is sensitive to element size, the amplitude of contact 
point potential is not always identical, even for scenarios 
with the same contact area, i.e., the generation of nonunique 
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contact force magnitudes. Second, although with the same 
direction of potential gradient, a jump in the direction of 
contact force may be encountered when the contact point 
moves from one sub-triangle to another. To solve these 
issues, a characteristic length of the mesh, instead of shape 
functions, is introduced to calculate the contact potential 
(Yan and Zheng 2017). This approach alleviates the depend-
ence of contact force calculation on element size. Recently, 
based on the penetration distance between contact pairs, a 
distance potential function has been proposed to calculate 
the normal contact force (Zhao et al. 2018a, b). It is worth 
noting that the existing contact algorithms used in the FDEM 
can ensure the conservation of momentum and energy dur-
ing the collision (Munjiza 2004; Yan and Zheng 2017; Zhao 
et al. 2018a, b). However, essentially, those methods work 
well when each discrete body is represented by a single finite 
element. If the boundary element (element on the bound-
ary) contains inner nodes, i.e., a discrete body consisting of 
multiple inner finite elements, those methods fail to obtain 
accurate contact force due to the simple definition of contact 
point potential (as will be described in Sect. 2.1). Especially 
for relatively large contact areas between contact pairs, the 
normal contact force can even decrease with the increase of 
contact areas, which obviously contradicts the actual physics 
(as will be elucidated in Sect. 3.2.2). Additionally, a jump in 
contact force direction may be encountered when the contac-
tor point moves from one sub-triangle to another in the target 
element (as will be discussed in Sect. 3.2.3). Recently, an 
energy-conserving model has been developed in 2D FDEM 
to overcome the dependence of contact force on element 
size, which also resolves the non-smoothness of the contact 
force direction in some special situations (Cai et al. 2024). 
However, the approach may have problems estimating the 
nonlinear relationship between contact force and overlap 
areas. Moreover, it is difficult for this approach to determine 
the position of contact points for complex contact scenarios, 
especially for 3D modeling.

As an improvement, Lei et al. (2020) introduce a smooth 
potential field based on the finite element topology to solve 
the artificial non-smoothness and jump of contact force. 
Instead of using a “triangle-to-triangle” strategy, their 
method adopts “triangle-to-node” to calculate contact forces 
by discretizing the edges of target elements into Gaussian 
integration points (target points), making it suitable for both 
concave and convex bodies of complex shapes. However, 
the computational accuracy of this approach depends on 
the number of target points, and too many target points will 
reduce the computational efficiency. In addition, the appro-
priate number of target points for balancing computational 
accuracy and computational costs has not been fully eluci-
dated. Importantly, the details of how to update local contact 
potential induced by crack initiation and propagation are not 
illustrated in their paper.

In this work, based on our in-house FDEM code, Pamuco, 
we establish a 2D unified distance potential field using the 
boundary node lists, in which the nodal contact potential of 
boundary elements is proportional to the shortest distance 
between each node and the solid boundaries. In the frame-
work of the unified distance potential field, the calculation 
of contact force is systematically introduced. The rest of the 
paper is organized as follows. In Sect. 2, we first introduce 
the contact algorithm used in the conventional FDEM and 
elucidate its shortcomings. Then, we use the boundary node 
lists to establish a unified distance potential field for arbi-
trary-shaped polygons, and the update of the distance poten-
tial field associated with solid fracturing is also achieved. 
Following this, the calculations of normal and tangential 
contact force are introduced. In Sect. 3, we conduct a series 
of benchmark cases to verify the accuracy and robustness of 
the proposed method for contact interaction between discrete 
bodies, and the advantages of the proposed approach are also 
demonstrated. Subsequently, in Sect. 4, two typical cases 
are presented to demonstrate the capability of the proposed 
approach to evaluate the stability of rock mass systems. Con-
clusions are drawn in Sect. 5.

2  Unified Contact Distance Potential Field

In this section, contact algorithms used in the conventional 
FDEM are briefly introduced, and their drawbacks are dem-
onstrated. Then, the proposed unified distance potential field 
is established by introducing the boundary node lists, and the 
update of the local distance potential field is realized when 
solid fracturing occurs. Finally, we introduce the formulation 
of normal and tangential contact force within the framework 
of the unified distance potential field.

2.1  Existing Contact Algorithms for FDEM

In 2D FDEM models for rocks, each discrete body is dis-
cretized into an assembly of triangular finite elements, and 
explicit time integration schemes are adopted to solve the 
nodal motion equations. The finite elements can deform, 
translate and rotate based on continuum mechanics princi-
ples and Newton’s second law. More details on the explicit 
time integration and the constitutive equations of finite ele-
ments are presented in Appendix A. The contact algorithm 
for processing the interaction between finite elements in 
contact in FDEM involves contact detection and contact 
interaction. The contact detection algorithm determines 
contact pairs (the two corresponding elements are denoted 
as contactor and target, respectively) using the efficient 
NBS (non-binary search) algorithm, which yields a theo-
retical CPU time proportional to the total number of finite 
elements (Munjiza and Andrews 1998). After obtaining 
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the contact pairs, the contact interaction algorithm will 
be performed to calculate the contact forces. The normal 
contact force is calculated based on the contact area of 
contact pairs, while the tangential contact force is deter-
mined by their relative slipping displacement. Both the 
normal and tangential contact forces are calculated in a 
penalty-based manner.

As sketched in Fig. 1, each of the two discrete bod-
ies in touch is discretized into a series of triangular finite 
elements, then the contact between the two bodies can 
be simplified into contact between a series of triangular 
elements along the common boundaries. These boundary 
elements can be further grouped into contact pairs based 
on their relative positions, and two discrete bodies are 
denoted as target (Etar) and contactor (Econ), respectively. 
The overlap area of Etar and Econ is marked as S, and dA 
denotes the infinitesimal contact area. The normal contact 
force df of dA is represented by (Munjiza 2004)

where Pc and Pt denote the point located in the target and 
contactor, respectively; the potential of points Pc and Pt are 
denoted by φc(Pc) and φt(Pt) , respectively. The total normal 
contact force of the overlap area is calculated by (Munjiza 
2004)

(1)d� =
(
∇φc

(
Pc

)
− ∇φt

(
Pt

))
dA,

(2)�c = ∫
S

(
∇φc

(
Pc

)
− ∇φt

(
Pt

))
dA.

The target and contactor areas consist of m and n triangular 
finite elements, respectively. Then, φc(Pc) and φt(Pt) can be, 
respectively, obtained by summating the potentials of these 
finite elements involved (Munjiza 2004), i.e.,

The total normal contact force can be defined by (Munjiza 
2004)

By replacing the integration over the area with the equiva-
lent integration over the boundary, the total normal contact 
force can be further simplified into (Munjiza 2004)

where Г represents the boundary of the overlap area of 
Etar and Econ; nГ denotes the unit outward normal at the 
boundary.

For each triangular element, the point potential is defined 
as (Munjiza 2004)
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}
,

Fig. 1  a The repulsive force generated by a small penetration of two contacting solid domains. b Discretization of the two domains (i.e., Etar and 
Econ). c Target (Et–i) and contactor (Ec–i) elements
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where A1, A2 and A3 denote the areas of the sub-triangles 
constituted by point P and the three edges of the triangular 
element; A is the area of element Et–i (see Fig. 1c). We notice 
that the calculation of point potential is crucial for accurately 
evaluating the normal contact force and should be propor-
tional to the contact area between contact pairs. However, 
Eq. (6) fails to accurately calculate the point potential due 
to its dependence on element size. Taking the two scenarios 
presented in Fig. 2 for example, two triangular elements 
ΔABC and ΔHBC (share the same edge BC) penetrate the 
same element ΔDEF with the same contact area along the 
boundary of edge BC. Based on Eq. (6), the potential values 
of point D inside ΔABC and ΔHBC can be respectively 
given by

where SΔDBC, SΔABC and SΔHBC represent the areas of 
ΔDBC, ΔABC and ΔHBC, respectively. Here, assuming 
SΔABC > SΔHBC, we have φ(DA) < φ(DH) , implying that 
the normal contact forces obtained in these two scenarios 
are different. However, this contradicts the fact that the nor-
mal contact forces in these two scenarios should be identi-
cal given the same contact area, indicating that the original 

(7)

{
φ
(
DA

)
=

SΔDBC

SΔABC

φ
(
DH

)
=

SΔDBC

SΔHBC

,

approach in FDEM has difficulty capturing accurate normal 
contact force. This original contact approach in FDEM is 
denoted as “Munjiza’s approach” hereafter.

To address this problem, Yan and Zheng (2017) redefine 
the potential function in Eq. (6) so that the point potential is 
proportional to the shortest distance from a point to the three 
edges of a triangular element, i.e.,

where H is the standard embedded amount, which is gener-
ally taken as the minimum height of all the triangular ele-
ments; hp–1, hp–2 and hp–3 are, respectively, the distance from 
point P to the three edges of the triangular element (see 
Fig. 3a). Similarly, Zhao et al. (2018b) define the distance 
potential at point P inside an arbitrary polygon as (Fig. 3b)

where h is the distance between point P and the correspond-
ing edge, and r denotes the radius of the maximum inscribed 
circle of the element. Although these two improvements can 
alleviate the influence of element sizes on contact force mag-
nitude (Yan and Zheng 2017; Zhao et al. 2018a, b), two 
issues remain unsolved. First, the potential of contactor point 
 Pc can decrease with the increase of penetration when the 
target element contains inner nodes (e.g., φ(Pc) < φ(Pc

�) in 
Fig. 3c), which may yield inaccurate contact force when 
the penetration between contact pairs is relatively large 
(e.g., exceeding half of the boundary element size). Sec-
ond, a jump in contact force direction may be encountered 
when the contactor point moves from one sub-triangle to 
another in target element (e.g., contactor point Pc moves 
from sub-triangle ΔABO to ΔBCO in Fig. 3d). In fact, these 
two improved contact algorithms (Yan and Zheng 2017; 
Zhao et al. 2018a, b) (they altogether are denoted as Yan 
and Zhao’s approach hereafter) are more suitable for pure 
DEM applications, which may be inappropriate for FDEM 

(8)φ
i
(P) =

1

H
min

{
hp−1, hp−2, hp−3

}
,

(9)φi(P) =

{
0, P is outside the element
h

r
, P is intside the element

,

Fig. 2  Triangular element DEF penetrates the target elements ABC 
and HBC with the same contact area

Fig. 3  Potential definition at point P using a Yan’s approach (Yan and 
Zheng 2017) and b Zhao’s approach (Zhao et al. 2018b). Sketches of 
the problems existing in these contact methods (i.e., Yan and Zheng 
2017; Zhao et al. 2018b) in terms of c large penetration and d jump in 

contact force direction. Contactor Point Pc is any point in the contac-
tor element. Point Pc′ denotes the movement trajectory of contactor 
point Pc via time
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in which each discrete body can contain multiple inner finite 
elements (as will be illustrated in Sects. 3.2.2 & 3.2.3). 
Therefore, it is necessary to propose a new contact interac-
tion method in the framework of FDEM to circumvent these 
existing deficiencies. Details of our proposed approach will 
be demonstrated next.

2.2  Nodal Distance Potential

In this section, we first establish two boundary node lists 
to calculate the nodal distance potential, which requires a 
theoretical CPU time proportional to the total number of 
boundary elements. Then, we show how to update the local 
nodal distance potential when solid fracturing occurs.

2.2.1  Establishment of Nodal Distance Potential

Theoretically, the nodal distance potential of a node is pro-
portional to the shortest distance between the node and the 
solid domain boundary (Munjiza et al. 2011). The nodal 
distance potential for the boundary nodes is zero, while it 
is greater than zero for inner nodes associated with bound-
ary elements (see Fig. 4). Note that the boundary nodes are 
the nodes on the boundary of the solid domain, while the 

rest of the nodes are defined as the inner nodes. As long as 
an element contains a boundary node, it is considered as a 
boundary element, while the rest of the elements are defined 
as the inner elements. In other words, a boundary element 
may contain one or more boundary nodes, whereas the nodes 
of inner elements are all inside the solid domain.

Since the contact penalty used in FDEM is generally 
much larger (e.g., by 10 × or 100 ×) than the elastic modulus 
of model materials, the penetration between contact pairs is 
generally less than the size of boundary elements. To reduce 
the computational cost, we only calculate the nodal distance 
potential of nodes associated with boundary elements in the 
present study, i.e., only the boundary elements will partici-
pate in the contact detection and contact interaction (Fig. 4), 
which is similar to Munjiza’s and Yan and Zhao’s approach. 
This assumption is reasonable and could satisfy the majority 
of contact scenarios. Although rarely, we must admit that 
our proposed approach may yield inaccurate contact forces 
if the penetration is too large (e.g., exceeds the boundary ele-
ment size). Moreover, if we obtain the nodal distance poten-
tial by looping over all boundary elements each time when 
new boundaries emerge (e.g., new fractures are generated), it 
no doubt requires demanding computational overhead. Here, 
we establish two boundary node lists to efficiently calculate 
the nodal distance potential.

We use the model presented in Fig. 5 as an example to 
elucidate the establishment of boundary node lists. Fol-
lowing the convention of FDEM, before the simulation, 
the solid domain shown in Fig. 5a is discretized into six 
triangular finite elements, and adjacent finite elements are 
connected with zero-thickness cohesive elements (Fig. 5b). 
We borrow the strategy introduced in our previous work 
using a master–slave manner (Cai et al. 2023) to obtain the 
mapping information from the original nodes before model 
discretization (denoted as master nodes, e.g., Node i1 to i6 
in Fig. 5a) to the corresponding new nodes after model dis-
cretization (denoted as slave nodes, e.g., Nodes 0 to 11 in 
Fig. 5b). More details of the establishment of master–slave 

Fig. 4  A solid domain is discretized into a group of finite elements 
and nodes

Fig. 5  a Solid domain. b Mesh discretization. Two master boundary node lists are established, i.e., c BounNodeUP[] and d BounNodeDOWN[]
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node lists can refer to Appendix B. For example, the mas-
ter Node i1 corresponds to two slave Nodes 1 and 2. To 
establish the boundary node lists, we introduce two data 
structures for the boundary master nodes, which are named 
BounNodeUP[] and BounNodeDOWN[], respectively. For 
each boundary element containing only one inner node (e.g., 
the elements in Fig. 5b), we have BounNodeUP[i1] = i2 and 
BounNodeDOWN[i2] = i1. By looping over all boundary 
elements (e.g.,  E1 to  E6 here), we can obtain two master 
boundary node lists (see Fig. 5c, d), i.e., i1 → i2 → i3 → i4 
→ i5 → i6 → i1 and i1 → i6 → i5 → i4 → i3 → i2 → i1. Note that 
the slave nodes corresponding to the same master node will 
displace together with their master node and share identical 
coordinates and nodal distance potential during the elastic 
deformation stage, i.e., the node binding scheme introduced 
in our previous work (Cai et al. 2023).

After establishing the boundary node lists, we can cal-
culate the nodal distance potential of the inner nodes of 
boundary elements. Based on the number of slave boundary 
nodes in a boundary element, we can classify the bound-
ary elements into three types, i.e., BoEle-1, BoEle-2 and 
BoEle-3, respectively denoting one, two and three bound-
ary slave nodes contained in a single boundary element. 
For the boundary elements belonging to BoEle-1, e.g., 
Δ012 shown in Fig. 6a (node 1 is on the boundary), we 
only need to calculate the shortest distance from the inner 
salve node 0 or 2 to edges 45 and 78. First, we can find the 
master boundary node i2 associated with the slave boundary 
node 1 based on the master–slave list; then, we continue to 
obtain the adjacent boundary master nodes i1 and i3 based 
on the boundary node lists, i.e., BounNodeUP[i2] = i3 and 
BounNodeDOWN[i2] = i1. If the shortest distance from the 
inner salve node 0 to edge i1i2 and i2i3 are denoted as d0–1 
and d0–3, respectively, we can obtain the nodal distance 
potential of salve node 0 using

where r is the maximal inscribed radius of all elements. 
Once the nodal distance potential of all inner salve nodes is 
obtained, we can further calculate the nodal distance poten-
tial of the inner master node (e.g., master node j1) using

where φ(0) and φ(3) are the nodal distance potential of 
slave nodes 0 and 3, respectively. For the boundary elements 
belonging to BoEle-2, e.g., Δ012 shown in Fig. 6b, only 
the nodal distance potential of the inner slave node 0 needs 
to be calculated by finding the shortest distance from the 
slave node 0 to edges 12, 78 and 45. Similar to BoEle-1, the 
master boundary nodes i1 and i4 can be easily determined 
through the boundary node lists, e.g., BounNodeUP[i3] = i4 

(10)φ(0) = min

{
d0−1

r
,
d0−3

r

}
,

(11)φ(j1) = min {φ(0), φ(3), ...},

and BounNodeDOWN[i2] = i1. Following this, the nodal 
distance potential of the inner master node j1 can also be 
obtained.

Once the nodal distance potential of all inner nodes asso-
ciated with boundary elements is obtained, we reach the final 
unified distance potential field. Continuing with the triangu-
lar finite element Δ012 shown in Fig. 6a as an example, for 
any point  Pi inside Δ012, the corresponding potential can 
be calculated by

where φ(j1) , φ(i2) and φ(j2) are the nodal potential at master 
nodes j1, i2 and j2, respectively. N1, N2 and N3 are the cor-
responding shape functions, i.e.,

where A1, A2 and A3 denote the areas of the sub-triangles 
constituted by point  Pi and the three edges of the triangular 
element; A is the total area of element Δ012 (see Fig. 6a). 
The established unified distance potential field of boundary 
elements for a convex and concave polygon solid domain 

(12)φ
(
Pi

)
= N1φ

(
j1
)
+ N2φ

(
i2
)
+ N3φ

(
j2
)
,

(13)N1 =
A3

A
; N2 =

A1

A
; N3 =

A2

A
,

Fig. 6  Calculation of nodal distance potential when a boundary ele-
ment contains a one (BoEle-1), b two (BoEle-2) and c three (BoEle-
3) boundary nodes. A1, A2 and A3 in (a) are the areas of the three sub-
triangles constituted by point  Pi and the three edges of the triangular 
element Δ012, respectively
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is shown in Fig. 7. It can be observed that the potential of 
the solid domain boundary is zero, while the largest nodal 
potential is distributed in the first layer of the inner nodes 
associated with boundary elements. The distance potential 
gradually increases when it is closer to the inner node of the 
boundary elements (Fig. 7b, d), demonstrating the reasona-
bleness of the established unified distance potential field.

However, if all nodes of a triangular element are on the 
boundary (e.g., BoEle-3 in Fig. 6c), the distance potential 
of any point inside the triangular element cannot be directly 
calculated using Eq. (12). To address this problem, we insert 
a new inner node into the interior or boundary of a triangular 

element to construct the unified distance potential field. For 
convenience, we choose the geometrical center point of the 
triangular element or the midpoint of the boundary as the 
inner node O (see Fig. 8a and c). Therefore, the potential of 
any point  Pi inside the individual triangular element can be 
given by

where φ(O) is the nodal potential at node O that is deter-
mined by the shortest distance between node O and the 
solid boundary (e.g., edges AB, BC and CA in Fig. 8a), and 
NPi

 denotes shape function in terms of node  Pi, which is 
obtained by the ratio of areas (e.g., SPiBC∕SABC in Fig. 8a 
and SPiDF∕SODF in Fig. 8c, where S denotes the areas of tri-
angles). The distance potential field of a triangular element 
with all nodes on the boundary is presented in Fig. 8b, d.

2.2.2  Update of Nodal Distance Potential

When solid fracturing occurs, the finite elements on the 
two sides of broken cohesive elements will be marked as 
new boundary elements (see Fig. 9a). Therefore, it is neces-
sary to update the local nodal distance potential to accom-
modate the contact interaction of these new fracture sur-
faces. Based on our previous work (Cai et al. 2023), we 
can easily obtain the new master nodes (i.e., i6, i7 and i8 
in Fig. 9a) based on the master–slave node mapping rela-
tionship. More details of the update of the master–slave list 
induced by solid fracturing are also presented in Appendix 
B. Taking the data structure of BounNodeUP[] for exam-
ple, we have BounNodeUP[i4] = i8, BounNodeUP[i8] = i7, 
BounNodeUP[i7] = i6 and BounNodeUP[i6] = i2. Then, the 
boundary node list will be updated from i5 → i4 → i3 → i2 → i1 
to i5 → i4 → i8 → i7 → i6 → i2 → i1. A similar procedure is per-
formed to update the data structure of BounNodeDOWN[]. 
Finally, we only need to calculate the local nodal distance 

(14)φ(Pi) = NPi
φ(O),

Fig. 7  Mesh and boundary and inner elements highlighted for a con-
vex and c concave solid domain. Unified distance potential field of 
boundary element for b convex and d concave solid domain

Fig. 8  Special cases for defining nodal distance potential field when 
all nodes of an element are on the boundary. a Inner node O is the 
geometrical center point of the triangular element. c Inner node O is 

the midpoint of the boundary. The distributions of the nodal distance 
potential field for these two cases are presented in (b, d), respectively. 
Point  Pi denotes an arbitrary point inside the triangular element
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potential of these new boundary elements (see the gray patch 
in Fig. 9a) based on the updated boundary node lists. The 
implementation of the update of nodal distance potential 
is presented in Algorithm 1. An example of updating the 

distance potential field of boundary elements associated with 
fracture propagation (towards the right direction) is sketched 
in Fig. 9b. Details on fracture initiation and propagation in 
FDEM can refer to Appendix C.

Algorithm 1 Update of nodal distance potential when solid fracturing occurs

1: Update master-slave lists (see Appendix B)
2: If a cohesive element is broken then
3:      Generate new master nodes i6, i7, i8 (see Fig. 9a)

4:      Find the corresponding slave nodes that belonged to new master nodes 

5: end if
6: Update boundary node list 
7: For slave nodes of broken cohesive element do
8:      Update BounNodeUP[]:

9:      BounNodeUP[i4] = i8, BounNodeUP[i8] = i7, BounNodeUP[i7] = i6, BounNodeUP[i6] = i2
10:      Update BounNodeDOWN[]:

11:      BounNodeDOW[i2] = i6, BounNodeDOWN[i6] = i7, BounNodeDOWN[i7] = i8, BounNodeDOWN[i8] = i4
12:      Mark new boundary elements and nodes

13: end for
14: Update local nodal potential
15: For slave nodes of broken cohesive element do
16:      Find new boundary elements around the slave node

17:      For each node of finite element do
18:           Update local nodal potential using Eqs. (10) & (11)

19:      end for
20: end for

Fig. 9  a Boundary nodes updated under fracture propagation; the elements involved in nodal distance potential update are highlighted in gray. b 
An example of updating the distance potential field associated with fracture propagation
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2.3  Formulation of Contact Force

After establishing the unified distance potential field, the 
normal contact force between contact pairs can be calcu-
lated. For the model shown in Fig. 10a, when the target 
element (Et–i) contains one or two inner nodes, the normal 
contact force FAB between target element Et–i and edge AB 
can be directly calculated by

where Pn is the normal penalty parameter; φ1 is the poten-
tial of point P1(A); L1 is the distance between point P1 and 
P0. Note that point P0 is the intersection point of edge AB 
and target element Et–i (see Fig. 10a), i.e., the potential of 
point P0 is zero. The direction of FAB is the outer normal 
of edge AB. The distance from contact point G (where the 
total moment is zero) to point A in Fig. 10a is L1∕3 . Once 
the nodes of the target triangular element Et–i are all on 
the boundary (see Fig. 10b), we also need to calculate the 
potential of intersections between edges AB and OE (i.e., 
point P1 in Fig. 10b). Then, the normal contact force FAB 
is modified as

where φ1 and φ2 are the potentials of points P1 and P2(A), 
respectively; L1 is the distance between points P1 and P2; 
L2 is the distance between points P1 and P0; the direction of 
FAB is the outer normal of edge AB. Note that the gray boxes 
in Fig. 10a, b are enclosed by the contact length (e.g., L1 and 
L2) and nodal potential (e.g., φ1 and φ2), which denotes the 
magnitude of normal contact force between target element 
Et–i and edge AB. According to the moment balance with 

(15)�AB =
1

2
Pnφ1L1,

(16)�AB =
1

2
Pn

(
(φ1 + φ2)L1 + φ1L2

)
,

respect to point A, the distance between contact point G and 
point A (Fig. 10b) is given by

Again, points P0 and P1 are the intersection points of edge 
AB and the sub-triangle element. Then, with shape functions 
NA, NB, ND, NE and NF, we can obtain the equivalent nodal 
force using (Munjiza et al. 2011)

As shown in Fig. 10c, the directions of FA and FB are 
consistent with FAB, while the directions of FD, FE and FF 
are opposite to FAB. Here, NA + NB = 1, ND + NF + NE = 1, 
which are associated with the position of contact point G. 
More details on the shape functions can be found in Mun-
jiza’s book (Munjiza et al. 2011).

The tangential contact force is calculated based on the 
relative slipping displacement between contact pairs and 
further updated using Coulomb’s friction law. The relative 
velocity (VrG) at contact point G (where contact force is 
applied and the total moment is zero) is given by Munjiza 
et al. (2011)

where VcG and VtG are the velocities of the contactor and 
target element at contact point G, respectively. These two 
can be, respectively, calculated by Munjiza et al. (2011)

(17)LAG =

(
4φ1 + 2φ2

)
L2
1
+ 3φ1L1L2 + φ1L

2

2

3
[(
φ1 + φ2

)
L1 + φ1L2

] .

(18)

�A = NA�AB

�B = NB�AB

�D = ND�AB

�E = NE�AB

�F = NF�AB

⎫
⎪⎪⎬⎪⎪⎭

.

(19)�rG = �cG − �tG,

Fig. 10  Calculation of normal contact force. a The target element Et–i 
contains inner nodes. b The nodes of the target element  Et–i are all on 
the boundary. c Equivalent nodal force. G represents the contact point 

(with respect to which the total moment is zero). The gray boxes 
denote the magnitude of normal contact force between target element 
Et–i and edge AB
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and

where VA, VB, VD, VE and VF are the node velocities shown 
in Fig. 11a. The tangential relative displacement increment 
(Δus) within one-time step (Δt) is given by Munjiza et al. 
(2011)

where VrGt is the projection of VrG on edge AB. The tan-
gential contact force can be updated incrementally using 
(Munjiza et al. 2011)

where �s and �t−Δt
s

 are tangential contact force at the current 
and previous time steps; Ps is the tangential penalty param-
eter; Lc is the contact length. As presented in Fig. 11b, if 
|�s| ≥ |�n|μ , the tangential contact force can be calculated 
based on Coulomb’s friction law (Munjiza et al. 2011)

where �n is the normal contact force, and μ is the contact 
friction coefficient. At the same time, the current tangential 
slip (us) is updated by (Munjiza et al. 2011)

Similar to the normal contact force, the tangential contact 
forces can also be resolved to the nodes of the associated 
triangular elements. The same procedure of calculating the 

(20)�cG = NA��
+ NB�B,

(21)�tG = ND�D + NE�F + NF�F

(22)Δus = VrGtΔt

(23)�s = �
t−Δt
s

− PsLcΔus

(24)�s =
�s

|�s| |�n|μ

(25)us =
|�s|
PsLc

contact force between target element Et–i and edge AB can 
be subsequently used to obtain the contact force acting on 
edges AC, ED and EF. Combining with the Cauchy stress 
of triangular elements in the previous time step, the nodal 
displacement and velocity in the current time step can be 
updated according to Eq. (A.4) to prepare for the next time 
step.

3  Verification and Comparison

In this section, several numerical experiments, such as those 
related to momentum conservation, energy conservation 
and frictional sliding, are first conducted to verify the accu-
racy of the proposed contact interaction algorithm. Then, 
we show the robustness of the proposed approach for the 
calculation of normal contact force in comparison to the 
existing contact algorithms in FDEM. The advantages of the 
proposed approach in terms of solid fracturing simulation 
and computational efficiency are also demonstrated through 
Brazilian tensile strength tests.

3.1  Verification

3.1.1  Momentum Conservation

Block collision tests are performed to verify the correct-
ness of the proposed approach in terms of momentum 
conservation. As shown in Fig. 12a, the model consists of 
two identical square blocks (Block-1 and Block-2) with a 
length of 10 mm, and their surfaces are frictionless. The 
parameters used for the two blocks are as follows: Young’s 
modulus E = 30.0 GPa, Poisson’s ratio ν = 0.2, bulk density 
ρ = 2700 kg/m3, viscous damping coefficient of finite ele-
ment η = 9.0 ×  103 kg/m·s, contact penalty Pn = Ps = 300 GPa, 
and time step Δt = 3.0 ×  10–8 s. Note that the viscous damp-
ing coefficient of finite elements is calculated using the 
equation � = 2h

√
Eρ (E is Young’s modulus, and ρ is bulk 

density) for all numerical cases (Tatone and Grasselli 2015). 
Each model consists of 1124 triangular elements with an 
average element size of 1 mm, and a structured triangulation 
mesh scheme is utilized. Gravity is ignored, and the total 
simulation time is 6 ×  10–3 s.

For simplicity, we only consider the horizontal velocity 
(in the x direction) of each block, i.e., their vertical veloci-
ties (in the y direction) are fixed at zero. We set two ini-
tial x velocities (v = 0.4 m/s and 0.5 m/s) for Block-1 to hit 
against the initially static Block-2, and the initial horizon-
tal gap between the two blocks is 1 mm. The mass center 
velocities of the two blocks are monitored for momentum 
calculation. The numerical results of the total momentum 
of Block-1 and Block-2 versus time for the two initial veloc-
ity scenarios are shown in Fig. 12b. It can be observed that 

Fig. 11  Calculation of tangential contact force. uc
s
 and ups denote the 

tangential slip distance at the current and previous time step, respec-
tively. Fmax denotes the maximum tangential contact force
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the total momentum obtained from the FDEM simulation is 
consistent with the analytical solution. The maximum rela-
tive errors (i.e., the absolute difference between the FDEM 
simulated results and the analytical solution divided by the 
analytical solution) for the two scenarios are only 5.18 ×  10–9 
and 5.48 ×  10–9, respectively. Such minor relative errors 
verify the accuracy of our proposed approach in terms of 
momentum conservation.

3.1.2  Energy Conservation

We conduct collision tests to examine the accuracy of the 
proposed approach in terms of energy conservation. As pre-
sented in Fig. 13a, the model consists of a disk and a rectan-
gle plate. The diameter of the disk is 20 mm, and the plate 
has dimensions of 40 mm × 10 mm (width × height). The 
plate is fixed, and we set different initial downward velocities 
(v = 0.45 m/s, 0.50 m/s and 0.55 m/s) for the disk to collide 
with the plate. We use Young’s modulus E = 30.0 GPa, Pois-
son’s ratio ν = 0.25, bulk density ρ = 2700 kg/m3 and contact 

penalty Pn = Ps = 300 GPa in the model. Gravity and finite 
element viscous damping are not considered in this case. 
The model consists of 351 triangular elements with an aver-
age element size of 2.5 mm, and an unstructured Delaunay 
triangulation mesh scheme is utilized. The total simulation 
time of the numerical model is 3.5 ×  10–4 s, with a time step 
of 6.0 ×  10–8 s. The system’s total kinetic energy Ek in the 
FDEM model can be calculated using

where mi and vi are respectively the nodal mass and nodal 
velocity for node i, and n is the total number of nodes in the 
system. The total kinetic energy versus time under different 
Block-1 initial velocities is shown in Fig. 13b. The kinetic 
energy of the system decreases first and then increases dur-
ing the collision, which is consistent with previous obser-
vations (Fukuda et al. 2019; Lei et al. 2020). For the three 
Block-1 initial velocities, the maximum relative errors (i.e., 

(26)Ek =

n∑
i=1

1

2
miv

2
i
,

Fig. 12  a Initial configuration 
and mesh of the collision square 
blocks with identical geometry. 
b The total momentum of the 
two blocks in terms of analyti-
cal solution and FDEM simula-
tion with two initial velocities 
for Block-1: v = 0.4 m/s and 
v = 0.5 m/s

Fig. 13  a Model geometry and loading conditions. b The system’s total kinetic energy with time under different initial velocities (v) for Block-1
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the absolute kinetic energy differences from pre to post-
impact divided by the initial kinetic energy for the impact-
ing sphere) are only 8.36 ×  10–6, 1.14 ×  10–5 and 1.34 ×  10–5, 
respectively, confirming that the proposed approach is 
energy-conserving for elastic collision.

3.1.3  Frictional Experiment

The classic test of a sliding block on an inclined plane is used 
to verify the accuracy of the proposed approach in terms 
of block sliding (Fig. 14a). The model consists of a small 
square block (Block-1) and a large rectangle block (Block-2) 
at the bottom. The length of Block-1 is 10 mm, and Block-2 
has dimensions of 90 mm × 10 mm (width × height). Block-1 
slides along the upper surface of Block-2 under gravity, and 
Block-2 is fixed. The parameters used for the model are as 
follows: Young’s modulus E = 30.0 GPa, Poisson’s ratio 
ν = 0.25, bulk density ρ = 2333 kg/m3, finite element vis-
cous damping coefficient η = 2.4 ×  104 kg/m·s, contact pen-
alty Pn = Ps = 300 GPa, and time step Δt = 6.0 ×  10–8 s. The 
model consists of 1,260 triangular elements with an aver-
age element size of 2.5 mm, and an unstructured Delaunay 
triangulation mesh scheme is utilized (Fig. 14b). The total 
simulation time of the model is 1.44 s.

If the friction angle between the two blocks is smaller 
than the inclination angle of Block-2, the analytical solutions 
for the spatial evolution of displacement s and velocity v of 
Block-1 along the upper surface of Block-2 are respectively 
given by

and

(27)s =
1

2
g(sinψ − μ cosψ)t2,

(28)v = g(sinψ − μ cosψ)t,

where g is the gravitational acceleration, μ denotes the fric-
tion coefficient between Block-1 and Block-2, and ψ is the 
inclined angle of Block-2 with respect to the horizontal line 
(anticlockwise positive from right). Here, g = – 9.8 m/s2, 
ψ = 30°. The evolutions of the displacement and velocity of 
Block-1 along the upper surface of Block-2 for three friction 
coefficients between the two blocks (μ = 0.0, 0.2 and 0.4) are 
shown in Fig. 15. It can be observed that the maximum rela-
tive errors for displacement and velocity are only 3.32 ×  10-8 
and 3.45 ×  10–8, respectively, verifying the accuracy of the 
proposed approach for block sliding contact simulation.

3.2  Comparison

3.2.1  Mesh Size Dependency

As mentioned in previous works (Yan and Zheng 2017; 
Zhao et al. 2018a, b), the potential definition of Munjiza’s 
approach is sensitive to element size (see Sect. 2.1). Here, 
we perform a series of collision tests to compare the normal 
contact force obtained from Munjiza’s approach, Yan and 
Zhao’s approach and our proposed approach under the same 
contact area. As shown in Fig. 16a, the model contains one 
small square block (Block-1) at the top and a large rectan-
gle block (Block-2) at the bottom. The length of Block-1 
is 10 mm, and Block-2 has dimensions of 90 mm × 10 mm 
(width × height). During the simulation, Block-2 is fixed, 
and Block-1 collides with Block-2 with a constant downward 
velocity of 0.05 m/s (i.e., -y direction). We set five loading 
points with a distance of 15 mm for Block-1, i.e., points 
A, B, C, D and E shown in Fig. 16a, to test the simulated 
normal contact force. The contact areas between Block-1 
and Block-2 at each specific time are the same for the five 
loading point scenarios.

The parameters used for the model are as follows: Young’s 
modulus E = 30.0 GPa, Poisson’s ratio ν = 0.27, bulk density 

Fig. 14  a Initial configuration of the numerical frictional experiment. b Mesh
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ρ = 2700 kg/m3, contact penalty Pn = Ps = 300 GPa, finite ele-
ment viscous damping coefficient η = 9.0 ×  104 kg/m·s, and 
time step Δt = 6.0 ×  10–8 s. Gravity is not considered, and the 
model consists of 279 triangular elements with an average 
size of 3.34 mm. Unstructured Delaunay triangulation mesh 
scheme is utilized, and the element size of Block-2 gradually 
decreases from left to right (see Fig. 16b).

As presented in Fig.  17a, for Munjiza’s approach, 
although the contact area for scenarios at each loading 
point is identical at each specific time, the normal contact 
forces for the five scenarios are different, manifesting the 
dependence of Munjiza’s approach on element size. For 
Yan and Zhao’s approach, the normal contact force remains 
unchanged with a small penetration. However, the depend-
ence of contact force on mesh size is also encountered when 
the penetration is relatively large (see Fig. 17b). For our pro-
posed approach, the obtained normal contact forces are the 

Fig. 15  a Displacement and b velocity of Block-1 along the top surface of Block-2 for different friction coefficients between the two blocks 
(μ = 0.0, 0.2 and 0.4)

Fig. 16  a Model geometry and the five contact scenarios. b Mesh

Fig. 17  Comparison of the simulated normal contact forces using a Munjiza’s approach, b Yan and Zhao’s approach, and c our proposed 
approach
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same for the five scenarios, and they also linearly increase 
with the increase of contact area (Fig. 17c), verifying the 
independence of the proposed approach on element size for 
normal contact force calculation.

3.2.2  Large Contact Area Test

As mentioned in the Introduction section and Fig. 3c, some 
recently improved contact algorithms for FDEM (Yan and 
Zheng 2017; Zhao et al. 2018a, b) also fail to obtain accu-
rate contact force when the penetration of the boundary ele-
ment is relatively large (e.g., exceeding half of the bound-
ary element size). To compare the normal contact force 
calculated by Yan and Zhao’s approach and our proposed 
approach for a relatively large contact area (but less than 
the boundary element size) between contact pairs, a con-
tact test containing one small square block (Block-1) and a 
large rectangle block (Block-2) is performed (see Fig. 18a). 
The dimensions of Block-1 and Block-2 are 10 mm × 15 mm 
and 30 mm × 20 mm, respectively. Block-1, with a constant 
downward velocity of 0.3 m/s (i.e., -y direction), is desig-
nated to collide with the fixed Block-2, and the selection 
of this velocity creates an extreme contact situation, i.e., a 
relatively large contact area between the two blocks. The 
parameters used for the model are as follows: Young’s 

modulus E = 30.0 GPa, Poisson’s ratio ν = 0.25, bulk density 
ρ = 2700 kg/m3, contact penalty Pn = Ps = 300 GPa, finite ele-
ment viscous damping coefficient η = 9.0 ×  104 kg/m·s, and 
time step Δt = 2.0 ×  10–7 s. Gravity is not considered in this 
case. Each block consists of four triangular elements, and the 
total simulation time is t = 0.012 s. The penetration between 
the two blocks reaches δ = vt = 3.6 mm at the end.

As shown in Fig. 18b, with the increasing contact area, 
the normal contact force calculated using Yan and Zhao’s 
approach increases nearly linearly at the beginning and 
decreases slightly close to the end. This contradicts the 
physics that the normal contact force should theoretically 
increase with the increasing contact area. In our proposed 
unified distance potential field, we can observe a linear 
increase of normal contact force with the increasing con-
tact area, verifying the applicability and robustness of the 
proposed approach for simulations with relatively large 
contact areas. It should be emphasized again that our pro-
posed approach may yield inaccurate contact forces when 
the penetration exceeds the boundary element size due to 
the nodal distance potential of nodes of inner elements not 
being calculated.

3.2.3  Normal Contact Force Direction

As previously pointed out in Fig. 3d, a jump in contact 
force direction may occur when the contact point moves 
from one sub-triangle to another using Yan and Zhao’s 
approach. Here, we use two overlapped equilateral triangle 
finite elements (Block-1 and Block-2), with a side length of 
10 mm and 5 mm, respectively, to test the correctness of the 
proposed approach for contact force direction calculation. 
As shown in Fig. 19a, Block-2 with a constant velocity of 
0.05 m/s is designed to impact the fixed Block-1 along the x 
axis direction, which forms a constant overlap area between 
the two blocks during the sliding process. The parameters 
used are as follows: Young’s modulus E = 30.0 GPa, Pois-
son’s ratio ν = 0.25, bulk density ρ = 2700 kg/m3, contact 
penalty Pn = Ps = 300 GPa, and finite element viscous damp-
ing coefficient η = 7.8 ×  104 kg/m·s. The total simulation 
time is 0.117 s with time step Δt = 2.6 ×  10–7 s. Note that 
the gravity and contact friction between the two blocks are 
not considered.

For convenience, the intersection angle between the 
calculated normal contact force direction and the x axis is 
denoted as γ (anticlockwise positive from the right). The 
evolution of the normal contact force direction with time 
using the proposed approach and Yan and Zhao’s approach 
is shown in Fig. 19b. For Yan and Zhao’s approach, we can 
observe that γ gradually increases when the location of con-
tact transits from sub-triangles ΔDEO to ΔEFO, and then γ 
gradually decreases when transiting from ΔEFO to ΔFDO. 
This demonstrates that the calculated normal contact force 

Fig. 18  a Initial geometric configuration of the model. b Normal 
contact force with time for both the proposed approach and Yan and 
Zhao’s approach. δ denotes the penetration distance (along -y direc-
tion) between the two blocks
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direction using Yan and Zhao’s approach deviates from the y 
direction (i.e., γ = 90°) when Block-2 is located near the two 
sides (i.e., edges OE and OF) of sub-triangle ΔEFO. How-
ever, the simulated normal contact force direction obtained 
by the proposed contact algorithm remains unchanged at 
γ = 90°during the sliding process. This is consistent with the 
physics that the geometric features between the two blocks 
should be constant. Therefore, the proposed contact algo-
rithm can effectively overcome the incorrect jump in the 
direction of normal contact force.

3.2.4  Brazilian Tensile Test

We perform Brazilian tensile tests to compare the Mun-
jiza’s and the proposed approach, with the purpose of 
evaluating our proposed approach for contact interaction 
processing along with fracture propagation. The model 
consists of two loading plates and a rock specimen, and 
the diameter of the rock specimen is 50 mm (see Fig. 20a). 
The axial loads are imposed on the specimen by moving 
the two plates inwards at a constant velocity of 0.05 m/s. 
This selected velocity can ensure the quasi-static loading 
of Brazilian tensile tests (Mahabadi et al. 2012; Tatone and 
Grasselli 2015). The model consists of 14,528 triangular 

Fig. 19  a Model geometry. b Evolution of the normal contact force direction with time for the proposed approach and Yan and Zhao’s approach. 
γ denotes the intersection angle between the calculated normal contact force direction and the x axis

Fig. 20  a Model geometry and boundary conditions. b Mesh. c Comparison of tensile stress for Munjiza’s approach and the proposed approach
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elements with an average element size of 0.76 mm, and 
the unstructured Delaunay triangulation mesh scheme 
is utilized (Fig.  20b). The rock specimen is assumed 
to be homogeneous and isotropic, and the time step is 
1.2 ×  10–8 s. The input parameters for the FDEM simula-
tions are tabulated in Table 1 and calibrated in previous 
work (Liu and Deng 2019).

The comparison of evolving tensile stresses for Mun-
jiza’s and the proposed approach is presented in Fig. 20c. 
The tensile stress, σt, of the rock specimen is calculated 
using (Liu and Deng 2019)

where Fc is the contact force between the loading plates and 
rock specimen; D and m are respectively the diameter and 
thickness (set as one unit here) of the rock specimen. As 
shown in Fig. 20c, tensile stress oscillations prior to peak 
stress are observed in Munjiza’s approach, which may be 
caused by the inaccurate evaluation of contact force (Fc) 
between the loading plates and the rock specimen since 
the tensile stress is determined by the contact force (see 
Eq. (29)) (Yan and Zheng 2017). For our proposed approach, 
the tensile stress increases smoothly with the increase of 
diametric displacement before peak stress, verifying the 
robustness of the proposed approach for contact force cal-
culation. Compared to Munjiza’s approach (1.522 MPa), the 
peak tensile strength obtained using our proposed approach 
(1.512 MPa) is relatively closer to the prescribed tensile 
strength of the rock specimen in the numerical models 
(1.5 MPa in Table 1).

To further compare the difference between Munjiza’s and 
the proposed approach, we select two typical stress levels 
where the tensile stresses reach 0.67 MPa and 0.65 MPa, 
respectively, representing the stress states before and after 
the peak strength (see Fig. 20c). When the tensile stress 
drops to 0.65 MPa (after the peak tensile stress), the crack 
number obtained using the proposed approach is slightly less 
than that of Munjiza’s approach; however, the crack propa-
gation paths from the two approaches are similar except for 
locations near the loading plates (Fig. 21a, b), indicating 
that the failure pattern difference of Brazilian tensile tests 
obtained by the two approaches is insignificant. The distance 
potential fields in our proposed approach at the two selected 
tensile stress levels (0.67 MPa and 0.65 MPa) are presented 

(29)�t =
2Fc

πDm
,

Table 1  Input parameters for the Brazilian tensile test (Liu and Deng 
2019)

Input parameters Values

Young’s modulus, E (GPa) 12.5
Bulk density, ρ (kg/m3) 2400
Poisson’s ratio, ν 0.25
Viscous damping coefficient, η (kg/m·s) 2800
Tensile strength, ft (MPa) 1.5
Cohesion, c (MPa) 8
Internal friction angle, φ (°) 30
Mode I fracture energy, Gf1 (J/m2) 8
Mode II fracture energy, Gf2 (J/m2) 60
Normal contact penalty, Pn (GPa) 18
Tangential contact penalty, Ps (GPa) 18
Cohesive penalty, Pf (GPa) 62.5
Sample-plate friction coefficient, k1 (–) 0.1
Sample friction coefficient, k2 (–) 0.7

Fig. 21  Crack patterns for a the proposed and b Munjiza’s approach 
when tensile stress drops to 0.65 MPa (after the peak tensile stress). 
The distance potential field of the model at different loading points: 
c 0.67 MPa (before peak tensile stress) and d) 0.65 MPa (after peak 
tensile stress) in the proposed approach. The ‘Damage Type’ varies 

from 0 to 1, where ‘0’ and ‘1’ respectively denote the pure shear and 
pure tensile cracks associated with the broken cohesive elements. 
More details on crack initiation and propagation in FDEM are avail-
able in Appendix C and Munjiza’s books (Munjiza 2004; Munjiza 
et al. 2011)
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in Fig. 21c, d, from which we can observe the change of 
the local distance potential field together with the crack 
propagation, which confirms the robustness of the proposed 
approach for the distance potential field updating.

We continue to use the specimen shown in Fig. 20a as an 
example to compare the computational efficiency between 
Munjiza’s approach and our proposed approach. A variable 
reffi is proposed to denote the ratio of computing time needed 
between Munjiza’s and the proposed approach upon the ten-
sile stress dropping to 90% of the peak stress. The diam-
eter of the specimen and average element size are denoted 
as D and h, respectively, and an increasing D/h represents 

an increase in the number of finite elements in the model. 
As shown in Fig. 22, with the increase of D/h, reffi gradu-
ally decreases and reaches around 0.8 for D/h = 125 (about 
32,229 triangle elements). Therefore, the proposed approach 
is slightly more computationally expensive than Munjiza’s 
approach, and such computational cost increase for our pro-
posed approach is more significant with the increasing num-
ber of finite elements due to the frequent update of boundary 
node lists when solid fracturing occurs.

4  Application Examples

In this section, two typical cases are employed to demon-
strate the capability of the proposed approach in evaluat-
ing the failure process of rock masses involving contact. 
Since we only focus on the contact interaction between rock 
blocks, no rock fracturing is considered here.

4.1  Rock Toppling and Slumping

In this section, rock slopes in a valley region are established 
to evaluate the capability of the proposed approach in simu-
lating the slope failure patterns. As shown in Fig. 23, the 
valley consists of rock slopes with triangular sliding bases, 
in which the rock slopes are cut by a joint set with a dip 
angle of 75° and spacing of 0.5 m. The bottom lengths of 
the two sliding bases with an inclined angle of 30° are 20 m. 
The parameters used for this model are as follows: Young’s 
modulus E = 30.0 GPa, Poisson’s ratio ν = 0.27, bulk den-
sity ρ = 2700 kg/m3, gravitational acceleration g = – 9.8 m/

Fig. 22  Comparison of computational efficiency between the pro-
posed and Munjiza’s approach with various element sizes. D denotes 
the diameter of the Brazilian disc and h is the average element size

Fig. 23  a The model of rock slopes in a valley cut by a set of through 
joints. b The velocity distribution of the rock slope model after 2.2 s. 
c The model of rock slopes in a valley cut by a set of persistent joints 

and d simulated results of rock slope after 3.5  s from the previous 
simulation (Zheng et al. 2020b)
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s2, contact penalty Pn = Ps = 300 GPa, finite element vis-
cous damping coefficient η = 6.0 ×  105 kg/m·s, and time step 
Δt = 2.0 ×  10–6 s. The model consists of 16,780 triangular 
elements with an average element size of 0.35 m, and the 
total simulation time is 2.2 s. The friction angle between the 
rock slope and the sliding base is set as 32°, indicating that 
the rock slope will not slide along the base. However, the 
rock slope will fail due to the existence of a joint set with 
a friction angle of 22° between joint surfaces (Zheng et al. 
2020b). As shown in Fig. 23b, the left rock slope falls in a 
slumping pattern, while the right part features a toppling 
pattern. These failure processes are consistent with previ-
ous studies (Zheng et al. 2018; Zheng et al. 2020a, b) (see 
Fig. 23c, d), verifying the proposed approach’s feasibility in 
simulating complex rock block behaviors.

4.2  Vaiont Landslide

The Vaiont landslide (Sitar et al. 1997) that occurred in 
northern Italy is employed to further simulate the rock 

slope sliding process at the engineering scale. The profile 
of the Vaiont landslide before and after the slide is presented 
in Fig. 24a, where the rocks slip along the sliding surface 
under gravity. The parameters used are as follows: Young’s 
modulus E = 10 GPa, Poisson’s ratio ν = 0.3, bulk density 
ρ = 2300 kg/m3, gravitational acceleration g = – 9.8 m/s2, 
contact penalty Pn = Ps = 100 GPa. We adopt the unstruc-
tured Delaunay triangulation scheme to mesh the model 
(Fig. 24b), and the rocks are discretized into individual finite 
elements without cohesion. The model consists of 8,750 
triangle elements, and the average element size is 4.2 m. 
Additionally, we select two monitoring points (i.e., MP-1 
and MP-2 in Fig. 24b) to track the evolution of their result-
ant velocities with time. Note that the friction coefficients 
between the rocks and between the rock and the sliding base 
are 0.15 and 0.20, respectively (Wei et al. 2019; Zheng et al. 
2014), and the effect of groundwater level on slope sliding 
is not considered.

The resultant velocities of the two monitoring points with 
time are presented in Fig. 25a. At the initial stage, rocks slide 

Fig. 24  a The typical cross-section of the Voiant landslide before and after the sliding (modified from Cai et al. 2024). b Mesh. Two monitoring 
points are denoted as MP-1 and MP-2

Fig. 25  a The resultant velocities at the two monitoring points with time using Munjiza’s approach and the proposed approach. Simulation 
results of the Vaiont landslide at b 9 s and c 15 s using the proposed approach
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down since the resistance force of the rock slope stacked 
along the sliding surface is insufficient to maintain its stabil-
ity. The resultant velocities obtained from both Munjiza’s 
approach and the proposed approach increase in a similar 
trend. The slope also exhibits a similar velocity distribution 
and moves forward as a whole (Fig. 25b). As the model 
continues to evolve, the movement of rocks is obstructed by 
the slope on the other side of the valley (Fig. 25c). Mean-
while, the resultant velocities at the two monitoring points 
gradually decrease with time. The peak of resultant veloci-
ties obtained from Munjiza’s approach is slightly larger than 
that of our proposed approach (Fig. 25a), indicating that 
the inaccurate evaluation of contact force may yield larger 
velocities during the violent collision. When the sliding of 
the rock slope stops, the deposit profiles of the rock slope 
obtained from the proposed and Munjiza’s approaches and 
the observations in situ are presented in Fig. 26. Compared 
with Munjiza’s approach, our proposed approach can bet-
ter capture the actual topography, which further verifies the 
accuracy of the proposed approach for rock slope sliding 
contact simulation.

5  Conclusions

Based on the boundary node lists, a unified distance 
potential field in 2D FDEM is established to simulate the 
contact interaction process between discrete bodies with 
arbitrary shapes. This proposed approach not only over-
comes the dependence of contact force on element size but 
also eliminates the artificial non-smooth transition of con-
tact force. The features of the proposed method to handle 
complex contact interaction of discrete bodies with arbi-
trary polygons are summarized as follows. (1) Instead of 
using the standard potential function, we propose using the 
boundary node lists to establish a unified distance potential 
field, in which the nodal potential of nodes associated with 
boundary elements can be calculated based on the shortest 
distance between each node and the model boundary. The 
local distance potential field in the proposed approach can 
also be updated accordingly when solid fracturing occurs. 
(2) Within the explicit FDEM framework, formulations 

of normal and tangential contact force are systematically 
given, and the accuracy and robustness of the proposed 
method for momentum conservation, energy conservation 
and frictional experiment are also verified. (3) Compared 
with the existing contact algorithms in FDEM, the pro-
posed approach can deal with complex cases involving 
relatively large contact areas between contact pairs and 
arbitrary shape polygons, and it can also overcome the 
jump of normal contact force direction. For the Brazil-
ian tensile tests, the proposed approach can obtain a more 
stable mechanical response in terms of the tensile stress 
curve.

We present two application examples to demonstrate the 
capability of the proposed approach for predicting the failure 
patterns of rock slopes. The simulation results reveal that 
the proposed approach can effectively capture the interac-
tion process of rock blocks, which is expected to provide a 
new technique to investigate the slumping and sliding failure 
mechanism of rock slopes. However, we infer that when it 
comes to 3D simulations involving crack propagation, the 
computational efficiency will be inevitably reduced due 
to the time-consuming update of boundary nodes. We are 
uncertain about the computational cost in 3D at the moment. 
Nevertheless, we can draw strategies from the recent litera-
ture to efficiently update the master–slave lists (Wu et al. 
2024), which may help improve the computational efficiency 
of updating the boundary nodes in 3D. Additional work, 
including alternative or similar algorithmic solutions in 
terms of contact models, as well as their extensions to 3D 
models, will be reported in the near future.

Appendix A: Explicit Solution in FDEM

In 2D FDEM models, the nodal motion equations based 
on the explicit integration schemes in FDEM can be 
expressed as (Munjiza 2004)

where M is the lumping mass matrix, C is the damping 
matrix, u is the nodal displacement vector, �̇ and ü are the 
nodal velocity and acceleration vector, respectively, and f 
represents the total nodal force vector. The damping matrix 
is introduced to consume kinetic energy for quasi-static equi-
librium cases. The conventional FDEM uses the central dif-
ference scheme to update the displacement and velocity of 
nodes at each simulation time step. Then, the velocity vector 
�̇ of each node can be obtained by

(A.1)𝐌�̈� + 𝐂�̇� = 𝐟 ,

(A.2)�̇�(t + Δt) = �̇�(t) + �̈�(t) ⋅ Δt

Fig. 26  The comparison of post-sliding topography with the proposed 
approach, Munjiza’s approach and the observations in situ at 30 s
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where Δt is the time step, and t and t + Δt denote the previ-
ous and current time instants, respectively. The displacement 
vector �(t + Δt) of the node can be updated using

Unlike the collision of rigid bodies, we can obtain 
the stress and deformation distribution of bodies during 
the contact or collision process in FDEM. The mechani-
cal behavior of constant strain finite elements can be 
expressed by Munjiza (2004)

Here

and

where �ij represents the Cauchy stress tensor, λ and � are the 
Lame constants, ui,j and uj,i are both the deformation gradient 
tensor, vi,j and vj,i are both the velocity gradient tensor, Bij 
denotes the left Cauchy-Green deformation tensor, Dij is the 
rate of deformation tensor, J is the determinant of deforma-
tion gradient, η is the viscous damping coefficient, and �ij is 
the Kronecker delta.

The boundary conditions are

and the initial conditions are

(A.3)�(t + Δt) = �(t) + �̇(t + Δt) ⋅ Δt

(A.4)

�ij =
�

2

(
J −

1

J

)
�ij +

�

J

(
Bij − �ij

)
+ �Dij (i,j = 1, 2).

(A.5)Bij =
1

2

(
ui,j + uj,i

)
,

(A.6)Dij =
1

2

(
vi,j + vj,i

)

(A.7)ui = ui , �ijnj = Ti,

where nj is the outward normal to the external surface, Ti is 
the component of externally applied traction, ui is the com-
ponent of nodal displacement vector u, and x denotes the 
global coordinate.

Appendix B: Establishment and Update 
of Master–Slave Node Lists

As illustrated in Fig. 27a, the whole continuous model 
domain is discretized into six triangular finite elements, and 
each node number of finite elements is independent rather 
than shared. We reserve the mapping information from 
the original nodes before model discretization (denoted 
as master nodes, e.g., Nodes j1 in Fig. 27a) to the corre-
sponding new nodes after model discretization (denoted 
as slave nodes, e.g., Nodes 0 to 5 in Fig. 27a) in a mas-
ter–slave manner. We introduce two arrays, a[] and b[], to 
store the information of master and slave nodes, respectively. 
Taking the cohesive element  C1 presented in Fig. 27a for 
example, we have a[1] = 2, a[10] = 11, b[1] = b[2] = j1, 
b[10] = b[11] = j2. By looping over all pre-inserted cohesive 
elements of the solid domain, we can establish the mas-
ter–slave node lists. For the master node j1, we can obtain 
the mapping list information such as 0 → j1, 1 → j1, …, 5 → j1 
and 0 → 1 → 2 → 3 → 4 → 5 → 0, respectively. Once the solid 
fracturing occurs (i.e., broken cohesive elements), we need 
to update the master–slave node mapping list accordingly 
to accommodate the variance of boundary node lists men-
tioned in Sect. 2.2.2. As shown in Fig. 27b, if the breakage 
of cohesive element  C1 and  C2 occurs, we have a[2] = 3, 
a[3] = – 1, a[4] = 5, a[5] = 0, a[0] = 1, a[1] = – 1 for array 
a[] and b[2] = b[3] = j3, b[4] = b[5] = b[0] = b[1] = j1 for array 

(A.8)ui(x, t = 0) = ui(x) , u̇i(x, t = 0) = u̇i(x),

Fig. 27  a Establishment and b update of master–slave node lists. 
Nodes j1, j2 and j3, j4 are old and new master nodes, respectively, 
and nodes 0 to 11 are slave nodes, where master and slave nodes are 
denoted by blue and red dots, respectively. The newly generated mas-

ter nodes are marked in black dots.  C1,  C2 and  C3 represent the cohe-
sive elements. The broken cohesive elements (i.e., microcracks) are 
marked by the light cyan patch
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b[]. As a result, the slave Nodes 0 to 5 are divided into two 
groups, and they are respectively mapped to a new master 
Node j3 and the old master Node j1. The other slave nodes 
(e.g., 6 to 11) of these invoked cohesive elements should 
also be processed at the same time in a similar manner.

Appendix C: Fracture Initiation 
and Propagation in FDEM

To simulate fracture initiation and propagation in rock 
masses, four-node cohesive elements with zero thickness 
are initially inserted into the common boundaries between 
adjacent finite element pairs at the beginning of the simula-
tion (see Fig. 28a, b). The cohesive tractions of each cohe-
sive element, i.e., σcoh and τcoh between the common edges 
of a triangle finite element pair, is denoted as a function 
of the relative displacements of the two edges of a cohe-
sive element, i.e., o and |s|, in the normal and tangential 
directions, respectively (see Fig. 28c–e). At present, the 
fracturing modes of cohesive elements mainly consist of 
three types, i.e., Mode I (tensile fracturing), Mode II (shear 
fracturing), and mixed Mode I-II (tensile-shear mixed frac-
turing). As shown in Fig. 28c, when the normal opening o 
increases to the elastic limits op, the normal cohesive stress 

( σcoh , tensile positive) reaches the tensile strength ft, which 
marks the damage initiation point of a cohesive element. 
As o continues to increase, the cohesive element starts to 
damage. When o reaches the critical (maximum) normal 
opening ot, i.e., the breakage point of cohesive element, a 
pure tensile microcrack will emerge (Mode I). Similarly, as 
presented in Fig. 28d, the shear cohesive stress ( τcoh ) reaches 
the shear strength fs when the tangential slipping |s| increases 
to the elastic limits sp. Specifically, the peak shear strength 
is defined using the Mohr–Coulomb criterion as

where c and φ are the cohesion and internal friction angle 
of the cohesive elements, respectively. The cohesive ele-
ment breakage of the mixed Mode I-II is determined by the 
combined effect of normal opening and tangential slipping 
(Fig. 28e). Note that the mixed Mode I-II includes two frac-
turing scenarios, i.e., tensile-shear fracturing and compres-
sive-shear fracturing. More details on the constitutive laws 
of cohesive elements can refer to previous works (Fukuda 
et al. 2019; Han et al. 2020; Tatone and Grasselli 2015).

(C.1)fs =

{
c if σcoh ≥ 0

c − σcoh tanφ if σcoh < 0
,

Fig. 28  a Conceptual model of FPZ (fracture process zone) develop-
ment ahead of fracture tip in brittle material (modified from Moham-
madnejad et  al. 2018). b The implementation of FPZ in Mode I in 
FDEM. c Constitutive of tensile fracturing mode, i.e., Mode I. d 
Constitutive of shear fracturing mode, i.e., Mode II. e Constitutive of 

mixed fracturing mode, i.e., mixed Mode I–II. Here, o and |s| repre-
sent the relative opening and slipping displacement of a cohesive ele-
ment, respectively; op and sp are the elastic limits of o and |s|, respec-
tively; ot and st are the critical values of o and |s|, respectively; ft and 
fs are the tensile and shear strength of cohesive element, respectively
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