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Abstract Constraining precise faulting geometry for shallow, shallowly dipping thrust earthquakes is a
common challenge. Plate boundary megathrust faults near the trench and décollement faults beneath
volcanic islands and nappes may dip only a few degrees. Long-period point source moment tensor waveform
inversions provide limited resolution of shallow fault dip angle. The possibility of splay faulting requires
precise dip estimation. High sensitivity to dip is provided by long-period Love wave amplitude azimuthal
radiation patterns, which undergo rapid change from four lobed to two lobed as dip decreases from 10° to 0°.
Modeling variability in Love wave nodal amplitudes allows the dip to be determined to within a few degrees.
This is demonstrated for the 25 October 2010 Mentawai (MWW 7.8) tsunami earthquake, which ruptured
the 2.0–5.0° dipping megathrust beneath the shallow sedimentary wedge offshore of Indonesia, and the 4
May 2018 Hawaii Island (MWW 6.9) thrust earthquake, which ruptured the 2.5–7.5° dipping décollement under
the island flank.

Plain Language Summary Earthquakes that involve thrust faulting at shallow depth occur
commonly, and determining the fault dip angle is important for interpreting the nature of such events.
Routine seismic wave analysis procedures for determining the faulting geometry for shallow thrust events
often do not provide precise resolution of dip, leaving ambiguity in the assessment of the tectonic nature of
the event. Spectral analysis of long-period radiation patterns for Love waves provides good sensitivity to fault
dip angle for large shallow, shallowly dipping thrust events. Analysis of long-period surface waves for two
shallow thrust events, a large near-trench subduction zone tsunami earthquake and the other a large
earthquake at the base of the island mass of Hawaii, demonstrates that fault dip can be resolved to within a
few degrees based on the sensitivity of Love wave radiation patterns to dip angle. Improved resolution of dip
angle provides better confidence in the tectonic interpretation and improves seismic moment and
slip estimation.

1. Introduction

Thrust faulting occurs on very shallowly dipping fault planes in multiple environments. Subduction zone
plate boundary megathrust faults have very low dip angles, often<5°, located below the toe of the sedimen-
tary wedge near the trench (e.g., Hayes et al., 2012). It is now recognized that large megathrust earthquakes
can involve slip that extends to the trench, notably in tsunami earthquakes (e.g., Ammon et al., 2006; Bilek &
Lay, 2002; Kanamori, 1972; Polet & Kanamori, 2000). Volcanic islands superimposed on depressed oceanic
seafloor can produce shallowly dipping thrust faulting on the basal décollement as topographic stresses
and magma injection drive the island to spread (e.g., Day et al., 2005; Gillard et al., 1996; Swanson et al.,
1976). Nappes, or thrust sheets, in continental regions commonly involve décollement with very low (<5°)
dip angles. With subduction zone megathrusts and island décollement seismogenic environments both
usually being located offshore, seismic waves are the primary data available to determine faulting geometry
and slip distribution for such shallow thrust earthquakes. The widespread occurrence of splay faulting in
upper wedges with dip angles significantly larger than the megathrust (e.g., Heidarzadeh, 2011; Park et al.,
2002; Plaza-Faverola et al., 2016) motivates reliable determination of earthquake dip rather than assumption
of megathrust geometry.
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Uncertainty in fault plane dip, δ, produces substantial uncertainty in esti-
mated seismic moment (M0) and inferred slip for shallow thrust events.
Excitation and radiation patterns for Rayleigh and Love waves are propor-
tional toM0 sin(2δ) for shallow dip-slip dislocations due to vanishing of ver-
tical strains at the free surface (e.g., Kanamori & Given, 1981). Dip angle
also controls vertical seafloor displacement, hence tsunami generation.
Routine waveform-based point source moment tensor inversions using
long-period seismic waves provide limited resolution (with at least ±10°
uncertainty) of fault dip as it decreases below 15°. Dip resolution is com-
parably poor in finite-fault inversions based on teleseismic body waves,
so a priori geometry of the thrust plane is typically assumed. Even for
major (MW 7.0 to 8.0) thrust earthquakes at shallow depths, such as tsu-
nami earthquakes, teleseismic wave analysis of the mainshock radiation
alone provides limited resolution of the near-trench faulting geometry
(e.g., Lay et al., 2011). This remains the case even when seismic, on-land
geodetic, and tsunami data are analyzed together (e.g., Yue et al., 2014).

Somewhat surprisingly, perhaps themost sensitive readily observable seis-
mic radiation characteristic that can tightly constrain shallow, shallowly
dipping thrust fault dip for large earthquakes is provided by long-period
Love wave amplitude radiation patterns. This arises due to a rapid change
in the azimuthal radiation pattern from quasi four lobed for dips larger
than 10° to two lobed for dips less than 2°. Rayleigh and Love wave ampli-
tude radiation patterns for a period T = 204.84 s for 6-km-deep point

source dip-slip shear dislocations with varying dip in the Preliminary Reference Earth Model (PREM) structure
(Dziewonski & Anderson, 1981) are shown in Figure 1. The seismic moment is the same in each case, so the
much stronger signal generation for steeper dip is apparent. Essentially, the two Love wave radiation nodes
along the fault strike for steeper dip geometry become lobes in the radiation pattern for zero dip. There is a
corresponding rapid decrease in Rayleigh wave amplitudes relative to Love wave amplitudes, and deepening
of Rayleigh wave nodes along strike. This behavior is expected over a broad long-period range, correspond-
ing to that for surface wave periods typically analyzed for large earthquakes. As source depth increases, the
sensitivity to dip angle also increases, as shown in supporting information Figure S1. For source depths of 9 to
15 km, slight (~2.5°) increase in dip angle produces Love wave radiation patterns similar to those for smaller
dip at 6-km depth. The Love wave radiation pattern is insensitive to rake variations of ±30° from purely dip
slip (Figure S2). We do not focus on the surface wave phase behavior here, as it is primarily sensitive to source
duration and depends on having path-specific propagation corrections. This behavior has long been known
and has given rise to ambiguity in interpretation of possible horizontal point force excitation of seismic waves
from landslides versus very shallow low-angle dip-slip faulting, because both produce rare two-lobed Love
wave radiation patterns (e.g., Dahlen, 1993; Eissler & Kanamori, 1987; Kanamori & Given, 1982; Kawakatsu,
1989; Wyss & Kovach, 1988). Here we exploit this acute sensitivity to dip of long-period Love waves for
shallow, shallowly dipping thrust events to constrain the faulting geometries of two large events in different
tectonic domains, assessing the implications for seismic moment and slip estimation, along with tectonic
interpretation of the faulting.

2. Data and Procedure

Two shallow focus dip-slip earthquakes are considered to demonstrate the dip resolution provided by long-
period Love wave radiation patterns. The first is the 25 October 2010 Mentawai tsunami earthquake (U.S.
Geological Survey [USGS]-National Earthquake Information Center: 14:42:22 UTC, 3.487°S, 100.082°E, MWW

7.8; https://earthquake.usgs.gov/earthquakes/eventpage/usp000hnj4#executive). TheW-phase moment ten-
sor for this event (Duputel et al., 2012) has a best double couple with strike ϕ = 324°, dip δ = 8°, rake λ = 96°,
seismic moment M0 = 5.41 × 1020 Nm, and half duration of 38 s. The global centroid moment tensor (GCMT)
best double-couple solution (http://www.globalcmt.org/CMTsearch.html) has ϕ = 316°, δ = 8°, λ = 96°,
M0 = 6.77 × 1020 Nm, and 37.3-s centroid time. The rupture process of this event has been extensively studied
(e.g., Hill et al., 2012; Lay et al., 2011; Newman et al., 2011; Satake et al., 2013; Yue et al., 2014), and seismic
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reflection profiles indicate the dip of the megathrust is about 7.5° from the hypocenter to the trench (Singh
et al., 2011), consistent with the dip for the long-period moment tensors.

The second event is the significantly smaller 4 May 2018 Hawaii Island earthquake (USGS-National
Earthquake Information Center, 22:32:54 UTC, 19.313°N, 154.998°W, MWW 6.9; https://earthquake.usgs.gov/
earthquakes/eventpage/us1000dyad#executive), which occurred early in the 2018 Kilauea eruption
sequence. The USGS W-phase best double-couple solution has ϕ = 240°, δ = 20°, λ = 114°,
M0 = 2.74 × 1019 Nm, and half duration of 6.5 s, while the GCMT solution has ϕ = 245°, δ = 20°, λ = 120°,
M0 = 2.71 × 1019 Nm, and 14.7 s centroid time. Finite-fault models of this event have been obtained by Liu
et al. (2018) and Bai et al. (2018). It occurred beneath the offshore flank of Kilauea seaward of the East Rift
Zone. If the long-period estimates of dip are too large, it plausibly ruptured the ~4° dipping décollement
between the island mass and the former Pacific plate seafloor as the flank wedge moves seaward (e.g.,
Delaney et al., 1998; Denlinger & Okubo, 1995; Morgan et al., 2000; Morgan et al., 2003). Both of these dip-slip
earthquakes appear to have ruptured at very shallow depth (nominal long-period centroid depths are
~11.5 km), with primary slip from 0 to 10 km below the seafloor.

Long 1-s sampled (LH) three-component seismograms from global digital networks are obtained for both
events from the Incorporated Research Institutions for Seismology Data Management System. Vertical
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components are used for Rayleigh waves, and horizontal components are rotated to separate Love waves.
Spectra are computed for group velocity-windowed R1, R2, G1, and G2 arrivals and corrected for propagation
effects to obtain source spectra using standard processing (e.g., Kanamori & Given, 1981; Velasco et al., 1992;
Zhang & Lay, 1990). Such spectral measurements can be inverted for the source moment tensor, but our goal
here is to focus on the Rayleigh and Love wave amplitude radiation patterns to evaluate their sensitivity to
dip, motivated by Figure 1.

3. Results for the 2010 Mentawai Earthquake

The Rayleigh and Love wave source spectra for a period of 227.56 s for the 2010 Mentawai earthquake are
shown in Figure 2, plotted versus azimuth from the source. The short-arc (R1, G1) and long-arc (R2, G2) arrivals
give generally compatible source spectrum estimates, and there is typical moderate level of scatter due to
use of simplified geometric spreading and attenuation corrections. A cluster of anomalously low R1 ampli-
tudes at North American stations for azimuths of 30° to 40° was removed, as the spectra appear to have
destructive interference from a 3-D propagation effect in the Pacific Ocean. The source spectra show the
two-lobed radiation pattern for the Rayleigh waves and a quasi-four-lobed pattern for the Love waves, as
expected for a shallowly dipping thrust event. Theoretical source spectra for ϕ = 324°, λ = 96°, and variable
δ from 2.5° to 10° computed for point sources 6 km deep in the PREM structure, which has a 3-km-deep ocean
layer, are shown by solid lines. The seismic moments for the theoretical spectra are scaled to give the same
peak amplitude for the Rayleigh waves, and the point source calculations exactly overlap. Note that the Love
wave nodes near azimuths of 120–160° and 300–340° are not as pronounced as those near 50° and 230°, and
this is accounted for by having dip less than 5°. There is also slight enhancement of both Rayleigh and Love
wave nodal amplitudes at azimuths of ~330° relative to ~150°, which is consistent with unilateral rupture
extending along strike for about 100 km at a rupture velocity Vr = 1.8 km/s (Yue et al., 2014), as shown by
the theoretical spectra for finite-fault models for δ = 2.0° and 2.5°. Overall, the spectra are compatible with
δ = 2.0° to 5°, with seismic moments increased relative to that for a dip of 7.5°, as used by Yue et al. (2014).
Similar results are found for other frequencies.

Because the 2010Mentawai event has relatively long source duration, typical of a tsunami earthquake, source
finiteness corrections are needed for precise seismic moment estimation, but the asymmetry of the Love
wave radiation nodes can be characterized even with the step dislocation point source calculations.
Scatter of near-nodal observations, particularly for the phase (not shown), makes formal inversion of the spec-
tra rather unstable, and least squares estimates tend to emphasize the large-amplitude data. Here the for-
ward models of the spectra directly guide selection of reasonable fault dip based on matching the
radiation asymmetry. Standard long-period waveform inversions tend to not resolve subtle variations in rela-
tive nodal patterns like those seen in Figure 2, so it is not surprising that they obtain a steeper dip than the
optimal value indicated by spectra. The advantage of spectral analysis is that radiation pattern nodes are
clearly observed and can be properly weighted, as long as enough data are available to sample the full
pattern well.

4. Results for the 2018 Hawaii Island Earthquake

Rayleigh and Love wave source spectra for a period of 204.80 s for the 2018 Hawaii earthquake are shown in
Figure 3, along with predictions for step function dislocation point sources for ϕ = 235°, λ = 102°, and δ vary-
ing from 2.5° to 12.5°. The theoretical models are again scaled to have the same peak Rayleigh wave radiation,
so the Rayleigh wave curves overlap. The scatter is somewhat higher than for the larger 2010 event, but the
two-lobed pattern for the Rayleigh waves is clear and the Love wave radiation pattern is quasi four lobed,
with the nodes near 50° and 230° azimuth being less pronounced than those near 140° and 320°. While instru-
ment calibration at long period is always a concern, the stability of the Rayleigh wave spectra and omission
of Love wave spectra that have inconsistent short-arc and long-arc arrivals provide confidence in the obser-
vations. Focusing and defocusing of Love waves, which sample shallower lithosphere than Rayleigh waves,
likely accounts for the greater scatter of the former. The models indicate that the asymmetry in the Love
wave radiation nodes is well accounted for by values of dip from 2.5° to 7.5° (allowing for some uncertainty
in source depth guided by Figure S1). Shallower dip angles (<2°) decrease the Rayleigh to Love wave ratio
rapidly, at odds with the data. These dips are significantly less than the 20° value for theW-phase and GCMT
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solutions, which predict very pronounced and symmetric nodes in the Love wave radiation pattern (e.g.,
Figure 1).

Given that there will be a noise threshold in the spectral data, perfect nodes are not expected to be observed,
so it is the systematic difference in the nodes along the rupture direction versus those in the perpendicular
direction that should be focused on. The amplitude ratio of the peak Rayleigh waves to the peak Love waves
is relatively insensitive to dip but can be influenced by source depth and velocity structure for the excitation
kernels. This allows a range of possible dip of from 2.5° to 7.5° for this event; these values are much smaller
than typically expected for a splay fault, so the constraint is very useful for tectonic interpretation.

5. Discussion and Conclusions

The long-period Love wave spectra for the 2010 Mentawai and 2018 Hawaii events indicate shallow dip for
the primary surface wave generation in both cases. As a result, steeper dipping splay faults in the overthrust
wedges can be ruled out as having produced the primary long-period radiation for both earthquakes. We
cannot resolve whether secondary radiation from steeper splay faulting contributed in each case, but it will
not account for the Love wave radiation pattern. It is straightforward to implement this analysis of long-
period source spectra to supplement waveform-based long-period moment tensor inversions to better con-
strain the geometry for finite-fault inversions. Sufficient generation of long-period surface waves with good

Figure 3. Observed and predicted Rayleigh wave (top) and Love wave (bottom) source spectral amplitudes for T = 204.80 s
for the 4 May 2018 Hawaii Island earthquake. Red dots indicate short-arc (R1, G1) observations; cyan dots indicate long-arc
(R2, G2) observations. Theoretical amplitudes for point source models with step function displacement time histories
with ϕ = 235°, λ = 102°, and δ from 2.5° to 12.5° are shown by the color curves. Seismic moment for each model is adjusted
to give the same Rayleigh wave peak amplitude.
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azimuthal coverage is required for this method to be applied, so it is most
viable for events with magnitudes of 6.5 and larger.

There are important implications of the fault dip being shallower than indi-
cated by point source moment tensor inversions for these large thrust
events. Since long-period estimates of seismic moment increase as the
dip decreases, for both events here the seismic moment is likely higher
than has been inferred previously. Estimates of slip from seismic inversions
depend on seismic moment and assumed rigidity, so it is also possible that
slip is larger than previously inferred. However, for both events, previous
finite-fault models using fairly shallow dip (~7.5°) have been constrained
by geodetic and tsunami observations that are directly sensitive to slip;
thus, very large increases in slip are unlikely. Shallower dip will typically
reduce tsunami excitation, so self-consistent calculations need to be made
to ensure that seismic moment and dip are compatible with observed sig-
nals. For the 2010 Mentawai event, slip may extend under nearly horizon-
tal sediments seaward of the deformation front, but small pop-up
structures may contribute to tsunami excitation.

For the 2018 Hawaii Island earthquake, Figure 4 compares slip models
obtained from inversion of broadband teleseismic P and SH waves assum-
ing a dip of 7.5° (Bai et al., 2018) and a slightly perturbed inversion of the
same data for a dip of 3.0°. For the 7.5° dip case, the model was shown
to be consistent with regional GPS and tsunami observations. The spatial
distribution of slip is dependent on the assumed dip; there is a landward
shift of slip for the 3° dip model. The fit to the seismic data and GPS obser-
vations is not quite as good for the latter model; exploration of effects of
assumed hypocentral depth, rupture dimensions, rupture velocity, etc.,
may allow a model with 3° dip to match all data as well as found for the
steeper dip by Bai et al. (2018). The seismic moment for the 3° dip model
is actually slightly smaller than for 7.5° dip; a large increase in moment is
not required for fitting the body waves. Reflection profiles of the island
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Figure 4. Finite-fault slip inversions using teleseismic broadband P and SH waves for the 4 May 2018 Hawaii Island earthquake for (a) ϕ = 235° and δ = 7.5°, con-
strained to fit onshore GPS data and regional tsunami recordings (Bai et al., 2018), and (b) ϕ = 235° and δ = 3.0° constrained to fit the GPS data. The inversion in
(a) givesM0 = 8.7 × 1019 Nm (MW 7.2), while that in (b) givesM0 = 7.5 × 1019 Nm (MW 7.2). U.S. Geological Survey catalog seismicity from 11 April to 14 May is shown
by time-coded circles. Subfault slip direction and magnitude are indicated by arrows (direction of hanging wall movement). The black star indicates the 2018
event epicenter. The faults dip gently toward the northwest and are likely the basal décollement between the volcanic mass and the former Pacific seafloor. Inferred
slip distribution and seismic moment depend on the dip angle estimate, so precise estimation is important.
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flank are consistent with a basal décollement dip of from 3° to 5°, but the structure is variable and locally may
be flatter or steeper (Morgan et al., 2003; Park et al., 2007). Slip on this shallow décollement has been pro-
posed for much larger events in Hawaii, such as the great 1868 rupture (Wyss, 1988), and the 1975
Kalapana event (e.g., Furumoto & Kovach, 1979).

The 1975 Kalapana, Hawaii, earthquake ruptured the same region as the 2018 event, with very similar epicen-
ter. The 1975 event was much larger, but there is similar uncertainty in faulting orientation, compounded by
significant coastal slumping. Ando (1979) initially interpreted the event as a shallowly dipping (10°) normal
fault at shallow depth, while Furumoto and Kovach (1979) argued for a shallowly dipping (9°) thrust event
on the same décollement as that which ruptured in 2018. Based on lack of a clear four-lobed pattern in
100-s period Love wave (G2) spectral amplitudes (Figure 5) along with evidence of shallow coastal slumping,
Eissler and Kanamori (1987) interpreted the Kalapana source with a single-force model appropriate for a dis-
aggregated landslide. This produces a two-lobed Love wave radiation pattern. In contrast, Nettles and
Ekström (2004) obtained a centroid moment tensor thrust fault solution with δ = 9°.

Love wave (T = 100 s) observations (from Eissler & Kanamori, 1987) and step dislocation radiation patterns are
shown in Figure 5 for dip angle δ ranging from 1° to 9°. The radiation pattern for the relatively oblique
(λ = 133°) centroid moment tensor thrust solution (Figure 5) is very similar to that for the model of Ando
(1979) shown by Eissler and Kanamori (1987), whereas the pattern for a 1° dipping fault (Figure 5) is almost
the same as for their conjectured horizontal point force. The Furumoto and Kovach (1979) model and a simi-
lar solution with 3° dip show strong Love wave node variation. There is substantial scatter in the data, as
expected for 100-s period signals, and there are questions about clipping of the digital signals at High-
Gain Long Period Network stations CTA and KON (Nettles & Ekström, 2004), but overall, the data are compa-
tible with very shallow (≤3°) dip of the fault, similar to the finding for the 2018 event. It is quite plausible that
some of the mismatch is due to additional radiation from slumping, giving a composite source radiation (e.g.,
Kawakatsu, 1989; Ma et al., 1999). We infer that the 2018 event reruptured a portion of the 1975 rupture zone.

Long-period surface wave spectra provide strong sensitivity to dip for shallow, shallowly dipping dip-slip
faulting and can help to identify the geometry of structures that rupture in near-trench tsunami earthquakes
and on basal décollement. As routine long-period moment tensor inversions are commonly performed using
complete waveforms, the nodal behavior for Love waves is intrinsically not as evident as in spectral analysis.
Low signal-to-noise, phase instability, and associated limited sampling of the nodal directions due to signal-
quality criteria may suppress the information about dip, which is concentrated in the subtle nodal asymmetry
of Love wave radiation for dip less than about 10°. This information can readily be extracted by conventional
surface wave spectral analysis. While long-period spectral information does have limitations for resolving
source properties, and complete waveform information is certainly the primary data to use for routine source
analyses, the spectral data provide particular sensitivity for shallowly dipping sources of large events. This, in
turn, has significant implications for tectonic interpretations, as the Love wave observations can convincingly
exclude significant slip on splay faults, if very low dip angle is indeed preferred.
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