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Abstract on 8 September 2017, a great (M,, 8.2) normal faulting earthquake ruptured within the
subducting Cocos Plate ~70 km landward from the Middle American Trench beneath the Tehuantepec
gap. lterative inversion and modeling of teleseismic and tsunami data and prediction of GPS displacements
indicate that the steeply dipping rupture extended ~180 km to the northwest along strike toward the Oaxaca
coast and from ~30 to 70 km in depth, with peak slip of ~13 m. The rupture likely broke through the entire
lithosphere of the young subducted slab in response to downdip slab pull. The plate boundary region
between the trench and the fault intersection with the megathrust appears to be frictionally coupled,
influencing location of the detachment. Comparisons of the broadband body wave magnitude (mg) and
moment-scaled radiated energy (Ex/Mo) establish that intraslab earthquakes tend to be more energetic than
interplate events, accounting for strong ground shaking observed for the 2017 event.

Plain Language Summary A large earthquake ruptured in the subducting Cocos Plate that
underthrusts Mexico and Central America offshore of Chiapas, in southern Mexico. Analysis of seismic
waves, deepwater tsunami recordings, and onshore geodetic displacements establishes that the rupture was
on a steeply dipping fault plane and that the slip extended across the entire underthrust lithosphere,
partially detaching the deeper slab. The event is located beneath the continental shelf, and there is a narrow
zone of the megathrust from the Middle American Trench to where this event reached the plate boundary
that appears to have frictional coupling, which likely influenced the location of the slab detachment. The
event radiated stronger short-period seismic waves than typical of comparable size events on subduction
zone plate boundaries, producing severe damage in Oaxaca and Chiapas.

1. Introduction

Along the stretch of the Middle American Trench offshore of southern Mexico from 94°W to 96°W, the
Tehuantepec Ridge is subducting at ~7.5 cm/yr (Figure 1). The dip of the underthrust Cocos slab transitions
from shallowly dipping beneath Mexico to the northwest to steeply dipping beneath Central America to the
southeast (Ponce et al., 1992). There is no record of a confidently identified large underthrusting earthquake
on the plate boundary in this region, so it has been designated as the Tehuantepec gap for many decades
(e.g., Kelleher & McCann, 1976; Kelleher et al., 1973; Nishenko, 1991; Singh et al.,, 1981), with very uncertain
seismic potential. This region was struck by a large earthquake on 8 September 2017 (15.022°N, 93.899°W,
47.4 km deep, 04:49:19.2 UTC, U.S. Geological Survey-National Earthquake Information Center (USGS-NEIC),
last updated on 27 October 2017, https://earthquake.usgs.gov/earthquakes/eventpage/us2000ahvO#origin).
Rather than being a plate boundary thrust event to fill the seismic gap, its faulting mechanism and depth
indicate an intraslab normal fault rupture. The moment magnitude estimates from the USGS-NEIC (M,
8.1) and the global centroid moment tensor (JCMT) Project (M,, 8.2; http://www.globalcmt.org/CMTsearch.
html) and the ~200 km long distribution of early aftershocks indicate a rare great intraslab earthquake
located beneath the broad continental slope offshore of southern Mexico (Figure 1). The hypocenter estimate
in the Mexican Servicio Sismolégico Nacional (SSN) catalog (14.85°N, 94.11°W, 58 km deep, Servicio
Sismoldgico Nacional, National Autonomous University of Mexico, http://www.ssn.unam.mx/, SSN, 2017) is
located about ~30 km southwest of the USGS-NEIC location (Figure 1).

Shaking from the earthquake was devastating in southern Mexico, with at least 98 fatalities, mostly in Oaxaca,
and 41,000 homes damaged. Peak tsunami waves of 1 to 1.75 m amplitude were recorded at Salina Cruz and
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Figure 1. Tectonic environment and seismicity around the 2017 M,,, 8.2 Chiapas earthquake. (a) Large earthquakes (M ~7+) from 1900 to 1976 from the USGS-NEIC
catalog (magenta circles), along with gCMT solutions for M5+ events from 1976 to 2017 (gray focal mechanisms). Stars show epicenters of the 2017 Chiapas
mainshock from USGS-NEIC, SSN, and our relocation from regional P arrivals. Green focal mechanisms show gCMT and W phase solutions. Blue rectangle indicates
the slip region of our preferred slip model. Aftershocks with M > 3.5 from SSN (circles), along with available gCMT solutions, are color coded with source depth.
The dashed curves show slab surface depths from model slab 1.0 (Hayes et al., 2012) with 20 km increments. Arrows indicate the Cocos Plate motion relative to a fixed
North American Plate from model MORVEL (DeMets et al., 2010). (b) Depth profile of the mainshock, aftershock sequence, and gCMT focal mechanisms along
profile A-A’ (azimuth 35°) within distances of +175 km. The bold blue line indicates the approximate depth extent of the mainshock from our preferred slip model.
The dashed gray curve shows the slab surface along profile A-A’.

in Chiapas. The offshore faulting location prevented even more severe shaking damage. Large shallow
(<70 km deep) intraslab normal faulting has previously struck beneath Mexico inland, causing major destruc-
tion, such as in 1858 (M ~7.7; Singh et al., 1996), 1907 (Oaxaca, M ~7.6), 1931 (Oaxaca, M ~7.6; Singh et al.,
1985), 1957 (Guerrero, M ~7.6), and 1999 (Oaxaca, M,, 7.5; Singh et al., 2000), as well as beneath the broader
offshore continental slope along Guatemala (1957, M ~7.7) and El Salvador (2001, M,, 7.7; Vallée et al., 2003).
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The 2017 event is the largest intraslab earthquake documented along the Mexican subduction zone, and it is
challenging to evaluate the seismic potential for such events given that the strain budgets in the slab are
poorly known. Temporal patterns of intraslab seismicity have been examined for coupled and uncoupled
subduction zones (Astiz & Kanamori, 1986; Astiz et al., 1988; Christensen & Ruff, 1988; Dmoska et al., 1988;
Lay et al., 1989; Mikumo et al.,, 2002; Ye et al., 2012). For weakly coupled regions, great intraslab normal fault-
ing may occur near the trench or in the outer rise, such as the 1977 M,, 8.3 Sumba earthquake (Lynnes & Lay,
1988; Spence, 1986), or after a preceding megathrust event has ruptured the shallow coupled zone, as for the
1933 M,, 8.4 Sanriku earthquake (Kanamori, 1971) or the 2007 Kuril M,, 8.1 earthquake (e.g., Lay et al., 2009). If
there is strong coupling of the megathrust that has not recently failed, great intraslab normal faulting may
occur downdip of the coupled zone, as for the 1977 M,, 8.1 Tonga earthquake (Christensen & Lay, 1988).

The Tehuantepec Ridge has significant bathymetric expression, and the buoyant ridge intersects the coast
where there is a major landward shift of the coastline and a broad submerged continental shelf. GPS stations
in Chiapas are thus located at large distance from the shallow megathrust, unlike along Oaxaca where the
offshore distance to the trench is small. The plate boundary in the Tehuantepec gap has relatively few inter-
plate thrust fault events in the gCMT catalog (Figures 1 and S1 in the supporting information), with most
locating seaward of the aftershock region of the 2017 event. There are more interplate thrusting events along
the megathrust along Oaxaca to the northwest and offshore of the southernmost Chiapas coast east of 94°W.
This region is also tectonically complicated by the northwestward extent of the Caribbean Plate and the obli-
que trend of the Caribbean-North American plate boundary through central Guatemala and offshore over the
region of the 2017 rupture (e.g., Franco et al., 2012). The Caribbean Plate appears to be leaving a forearc block
behind as it moves eastward, complicating the upper plate deformation pattern. Franco et al. (2012) allow for
this and infer fairly high interplate coupling, >0.6, offshore of Chiapas as far west as 95.5°W, spanning the
region above the 2017 rupture zone, in contrast to relatively low coupling to the southeast offshore
Guatemala and El Salvador.

The rupture characteristics of the 2017 Chiapas earthquake are determined here to evaluate tectonic impli-
cations of this event and to address the severity of the strong shaking associated with the source radiation.

2. Analysis of the Source Process

Global long-period W phase data are inverted for a point source representation of the 2017 earthquake to
constrain the faulting geometry, centroid depth, and seismic moment (Kanamori & Rivera, 2008). We use
182 channels from 71 Federation of Digital Seismic Network stations filtered in the frequency band of 2 to
5 mHz. The best double couple for the solution has strike 313° dip 77.7°, and rake —95.5°, with seismic
moment of 2.57 x 102 Nm (M,, 8.21), a 26.0 s centroid time shift for an assumed symmetric triangular source
time function, and a centroid location of 15.340°N, 94.309°W at 50.5 km depth (Figure S2). The centroid depth
resolution for the W phase inversion is limited, so we enhance the sensitivity by evaluating the misfit in the
predicted fundamental mode of Rayleigh waves that follows the W phase window for vertical component
recordings using the W phase inversion solutions for specified depths. The Rayleigh wave misfit is also mini-
mized at 50.5 km, with a broad region of low misfit from 45 to 65 km (Figure S2).

Given the tendency for USGS-NEIC locations to be biased in the slab dip direction for subduction zones
(Figure S1c), we measure the first arrival times from regional seismograms to relocate the hypocenter. A grid
search indicates an optimal location at 14.940°N, 93.940°W (Figure S3), which is between the initial USGS loca-
tion (subsequently updated to nearer our preferred location) and the SSN location, placing the hypocenter
below the shelf break (Figures 1 and S3). The depth is not resolved in the relocation, and we fix it at
60 km, similar to the other solutions.

For the relocated hypocenter, we perform a teleseismic short-period (0.5-2.0 s) P wave backprojection for
data in westernmost North America (Figure S4), using the method of Xu et al. (2009). The resulting image indi-
cates unilateral rupture propagation toward the northwest, extending into Oaxaca, with overall maximum
rupture speed of ~3 to 4 km/s. We found that backprojections for seismic networks in eastern North
America and Europe or for a global configuration did not provide robust images.

Guided by the faulting geometry from the W phase inversion, our relocated hypocenter, and the kinematic
constraints from the backprojection, we invert for finite-fault rupture models using teleseismic broadband
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strike = 313°, dip = 77.7°, average rake = -99°, Hc =53 km, Vr = 3.5 km/s, Var. = 0.12
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Figure 2. Finite-fault slip model inverted from teleseismic P and SH waves for the 2017 Chiapas earthquake. (a) The slip distribution with arrows indicating average
rake of each subfault, and slip magnitude being color coded, and 10 s isochrones for the expanding rupture front (white dashed curves). (b) The moment rate
function, seismic moment, and centroid time. (c) The average source spectrum (red) and a reference w2 spectrum (dashed line) with assumed stress parameter of
3 MPa and shear wave speed of 3.75 km/s. (d) Radiation patterns of teleseismic P and SH waves from the average double-couple focal mechanism. Cyan dots
indicate the positions sampled by 74 P waves and 49 SH waves used in the inversions.

P wave displacements and SH wave ground velocities (Figure 3) using linear least squares inversion based on
Hartzell and Heaton (1983) and Kikuchi and Kanamori (1992), as updated by Ye et al. (2016a). We use a planar
fault extending asymmetrically toward the northwest, parameterizing each subfault to 10 km along strike and
7.5 km along dip, with a source time function having fourteen 2 s rise time triangles offset by 2 s each,
allowing up to 30 s subfault durations. The teleseismic data can be fit very well for predominantly
unilateral models with maximum rupture expansion velocities of 3 to 4 km/s and total rupture lengths of
160 km or longer, for the USGS, SSN, or our preferred source locations. To improve the constraint on the
absolute location of the faulting and the overall rupture length, we model deepwater tsunami recordings
and a preliminary open data set of coseismic displacements from daily GPS records (Nevada Geodetic
Laboratory, http://geodesy.unr.edu/). Figure 2 shows the final rupture model that we obtain, and Figure 3
shows the fit to the teleseismic observations for this model.

We obtain this final model by iterative modeling of five ocean bottom pressure sensor recordings from NOAA
Deep-Ocean Assessment and Reporting of Tsunami (DART) buoy stations (Figure 4b), which recorded very
clear deepwater tsunami waveforms. In modeling the tsunami recording we use NEOWAVE, a shock-
capturing nonhydrostatic model based on the staggered finite-difference formulation (Yamazaki, Cheung,
etal,, 2011; Yamazaki et al., 2009). The governing, nonlinear shallow water equations are coupled with a pres-
sure Poisson equation for the depth-averaged vertical velocity, which accounts for weakly dispersive tsunami
waves. The vertical velocity term also describes the time-varying deformation of the seafloor making the
calculation fully consistent with the kinematic finite-fault slip model. Two 2-way nested grid levels are used
to represent the 30 arc sec GEBCO bathymetry near the coastal source region and 2 arc min bathymetry over
the eastern Pacific.

We follow an iterative modeling strategy similar to prior successful applications (e.g., Bai et al., 2017; Lay
et al, 2013 Yamazaki, Lay, et al,, 2011), inverting the seismic data for a finite source model, predicting the
tsunami observations, deducing necessary modifications of the underconstrained seismic inversion para-
meters (fault dimensions and absolute fault placement) and iterating to convergence on a self-consistent
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Figure 3. Comparison between observed (black) and synthetic (red) teleseismic (a) P displacement and (b) SH velocity waveforms from our preferred slip model,
plotted as a function of directivity parameter relative to the fault strike direction. The blue dashed lines show unilateral rupture to the northwest along the fault

strike direction with a speed of 3.0 km/s.

source representation that provides good fit to both sets of observations. We focus on the distribution of
slip along strike and the absolute placement of the model. The shallow continental shelf is effective in
trapping tsunami energy. The initial arrivals at the DART stations primarily come from the uplift on the
continental slope (Figure 4a). The stations provide 180° coverage of the tsunami to constrain the fault
placement (Figure 4b). Using the initial USGS-NEIC location, we found very poor prediction of the
tsunami waveforms and deduced that the source must locate closer to the shelf break. We also found
poor predictions of the tsunami for the SSN location. Using our relocated hypocenter from regional
travel times in between the USGS-NEIC and SSN locations (Figure S3), we find significant improvement
in the tsunami waveform fits (Figure 4c).

A suite of models for varying choices of strike, dip, hypocenter, fault length, rupture speed, and subfault dura-
tion defines the range of parameters compatible with both seismic and tsunami observations. Rupture
models with fault lengths <150 km provide satisfactory fits to both data sets. However, the GPS displace-
ments for stations in Oaxaca provide additional constraints on the northwestward extent of faulting
(Figure 4a). We therefore seek models consistent with all three data types by extending the rupture to near
the Oaxaca coast, matching the strength and direction of the displacements at stations OXTH, OXUM, TNSJ,
TNNP, and TNCY using the elastic half-space solution of Okada (1985). The rupture model in Figure 2,
obtained mainly from seismic inversion, predicts the horizontal displacements well for the Oaxaca stations
(Figure 4a) and gives excellent fits to the seismic data accounting for 88% of the signal power (Figure 3)
and to the tsunami waveforms (Figure 4c).

The preferred model has a rupture expansion speed of 3.5 km/s, resolved to about £0.5 km/s, and a fault
extending 185 km northwestward from our relocated hypocenter to below the Oaxaca coastline
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Figure 4. Comparison between observed and predicted GPS and tsunamis for our preferred slip model. (a) Black and red arrows show observed and predicted
horizontal static motions at GPS stations. Background color indicates predicted vertical deformation. Data for OXPE, OXTH, ICHS, and TNPJ are determined from rapid
time series with large uncertainty. The red star and rectangle show the mainshock epicenter and slip region, and cyan vectors show the slip distribution and
magnitude. (b) Tsunami wave amplitude across the eastern Pacific and regional nested (black rectangle) grids at 2 arc min and 30 arc sec resolution. Circles shows the
location of DART stations used in constraining the slip distribution. (c) Comparison of recorded (black) and computed (red) waveforms (left column) and
amplitude spectra (right column) at DART stations.

(Figure 1a), with strike of 313° and dip of 77.7°. We found acceptable models for strike and dip varying by a
few degrees, so we settled on the solution with our W phase geometry, ensuring consistency with long-
period seismic waves as well. The moment rate function has a dominant pulse 40 s in duration, with
energy later than 50 s originating near the Oaxaca coast, about 180 km from the source. The late slip abuts
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Figure 5. (a) Body wave magnitude (mg) and (b) moment-scaled radiated
energy (Eg/Mo) plotted as a function of moment magnitude (M,,) for earth-
quakes in different tectonic environments. The red, green, and blue dots

show intraplate, typical megathrust, and tsunami earthquakes, respectively.

the edge of our model, but extending the model further overpredicts the
geodetic displacements. It is plausible that the late slip is on a separate
fault plane, possibly with different geometry, so it is not well constrained
and is not critical to the fit of the seismic and tsunami data. However, there
is certainly a need for minor slip near the coast to match the Oaxaca GPS
data. The seismic moment of our final model is 2.56 x 10%' Nm, with a cen-
troid time of 29 s, compatible with the W phase solution. The slip-weighted
static stress drop for this model is 18 MPa using the procedure from Ye
et al. (2016a).

We estimate the average source spectrum for the 2017 earthquake using
the spectrum of the slip model moment rate function for frequencies less
than 0.05 Hz and averaged P wave spectra after corrections of radiation
pattern, geometrical spreading, and attenuation for higher frequencies.
The decay rate, ~1.3, from ~0.1 to 1 Hz, is lower than ~1.6 average for large
interplate events (Ye et al.,, 2016b), suggesting increased high-frequency
source radiation. The radiated energy is 2.56 x 106 J, following the proce-
dure described by Ye et al. (2016b), giving a relatively high moment-scaled
value of 2.38 x 107>,

3. Discussion

The seismic waves from the 2017 earthquake are relatively enriched in
short-period energy, and we place the event in the context of other intra-
plate events relative to interplate ruptures in Figure 5. Here we determine
the classic broadband body wave magnitude (mg) (Gutenberg, 1945)
measured at periods of ~3.7 s (7.79) and ~7.3 s (7.83) after converting
broadband P waves to Wiechert seismometer responses with dominant
periods of 3.5 s and 10 s, respectively, for consistency with old events
(Bormann & Saul, 2009; Utsu, 2002). The 2017 event lies along the trend
of mg versus M,, for intraplate ruptures that is ~0.35 magnitude units
higher than the parallel trend found for typical interplate ruptures and
much higher than for tsunami earthquakes (Figure 5a). The use of the
classic magnitude measure allows comparison with the 1931 Oaxaca and
1933 Sanriku normal faulting events, with the 2017 value locating on the
same trend. The moment-scaled radiated energy, which can only be
robustly estimated for recent events, is also consistently higher than for
most interplate events (Figure 5b).

The large size of the Chiapas rupture suggests fracture of the entire Cocos
lithosphere across the Tehuantepec Ridge. The lithospheric age is ~25 Ma,
with ~65 km depth to the 1300°C isotherm and a brittle region ~30 km

thick to the 600°C isotherm (Manea & Manea, 2006). The large-scale variation in dip of the slab may influence
the stress state locally (Ponce et al., 1992), but the stress is dominated by downdip tension, consistent with
the steeply dipping normal fault for the 2017 event. We view the rupture as more likely to represent breaking
of the plate than bending of the upper portion of the brittle lithosphere due to the size and extent of the rup-
ture. While the depth extent is not precisely resolved by our data, the rupture appears to extend from ~30 to
70 km, sufficient to locally detach the lithosphere. The location relative to the trench is similar to that for the
1931 Oaxaca earthquake, which is downdip of a locked portion of the megathrust (Singh et al., 1985). We infer
that the seaward portion of the megathrust updip from where the 2017 rupture plane intersects it is partially
locked, based on the occurrence of minor thrusting activity in this region and the regional geodetic inference
of slip deficit (Franco et al., 2012). However, the lack of historic large megathrust ruptures in the relatively
narrow strip of megathrust slip deficit raises the possibility that either the coupling is very heterogeneous
due to the bathymetric structure of the subducting ridge, reducing the size of ruptures in the region, or
the buoyancy is such that the region is undergoing high-stress creep rather than stick-slip motion. In
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either case, the existence of shallow slip deficit may have concentrated slab pull stress at the lower edge of
the locked zone, influencing the 2017 location, rather than allowing extensional stress to concentrate near
the trench to produce great normal faulting there.

4. Conclusions

The 2017 Chiapas earthquake ruptured through the lithosphere of the subducting Cocos slab, essentially
detaching the slab locally over an ~150 km long region. The event activated faulting just offshore of the
Oaxaca coast on either the same fault or another one, and that signal contributed strongly to the GPS
deformations in Oaxaca. The M,, 8.2 earthquake is one of the largest recorded events within a subducting
plate beneath the megathrust. There are small shallow interplate thrusting events seaward of where the
2017 faulting intersects the megathrust. Along with geodetic indications of slip deficit, this suggests that
the shallow slip deficit region influences where stress was concentrated to rupture within the plate. The
rupture is energetic, with high moment-scaled radiated energy and a large mp (7.8) typical of intraplate
ruptures. The enhanced level of short-period energy contributed to the significant shaking damage experi-
enced in southern Mexico.
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