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Abstract The 17 July 2017 Komandorsky Islands MW 7.8 earthquake involved arc-parallel right-lateral
patchy strike-slip faulting along ~400 km of the Bering Fracture Zone (BFZ) in the westernmost Aleutian
Islands back arc. The large size of the earthquake indicates that the BFZ serves regionally as the primary plate
boundary extending from the Near Islands to Kamchatka, with the fore-arc Komandorsky Sliver translating
rapidly parallel to the Aleutian Trench. The slip distribution is determined by analysis of seismic, tsunami, and
geodetic observations. Fault displacements of 4 to 8.5 m, mostly in the upper 15 km, but with localized
extension to 20 to 30 km depth along a ~100 km long segment of the BFZ, are comparable to the possible slip
deficit since the last major earthquakes in this region in 1849 and 1858, given an estimated 5.1 cm/yr rate
between the Komandorsky Sliver and the Bering Plate.

Plain Language Summary A large earthquake struck the westernmost portion of the Aleutian
Island arc on 17 July 2017. In this region the Pacific plate is moving relative to the North American plate
parallel to the plate boundary, with no convergence. As a result the plate motion is accommodated on a
strike-slip fault in the upper plate, located along the Bering Fracture Zone. The earthquake produced slip and
aftershocks along a 400 km long stretch of the Bering Fracture Zone in a magnitude 7.8 earthquake. The slip
distribution and time history are determined by modeling seismic, geodetic, and tsunami data. The event is
comparable in length and seismic moment to the 1906 San Francisco earthquake on the San Andreas Fault.

1. Introduction

The westernmost Aleutians is one of the few subduction zone sections for which relative plate motions
increase in obliquity all the way to trench-parallel shearing, with a cessation of convergence (Figure 1a).
Slip partitioning progressively increases westward along the curved Aleutian arc (Avé Lallemant, 1996; Avé
Lallemant & Oldow, 2000; Ekström & Engdahl, 1989), with the primary upper plate faulting migrating from
fore-arc faults to the back-arc west of 172°E. Relative shearing motion between the Pacific Plate and North
American Plate is ~7.8 cm/yr along this region (Figure 1a), with slip partitioning having activated back-arc
strike-slip faulting along the Bering Fracture Zone (BFZ), resulting in the Komandorsky Sliver (KS). The BFZ
formed during the spreading that began in the Komandorsky Basin west of the Shirshov aseismic ridge
around 25 Ma (e.g., Yogodzinski et al., 1993).

Recent GPSmeasurements indicate motion of the KS almost parallel to the Pacific Plate motion (Figure 1b), at
5.1 cm/yr, about two thirds of the Pacific-North America rate (Kogan et al., 2017). Paleomagnetic observations
(Minyuk & Stone, 2009) of the Komandorsky Islands (Bering and Medny) indicate localized internal clockwise
rotation within the KS. The upper plate in this region is the Bering Plate (or Bering Block) (e.g., Cross &
Freymueller, 2008; Lander et al., 1994; Mackey et al., 1997), which has minor clockwise rotation relative to
North America, so the Pacific-Bering relative motion is almost the same as the Pacific-North America motion.
The BFZ is thus proposed to be the primary tectonic plate boundary in the westernmost Aleutians (Figure 1),
with right-lateral strike-slip faulting (Kogan et al., 2017). About 2.7 cm/yr of relative motion between the
Pacific Plate and the KS is accommodated either by strike-slip faulting on the shallow-dipping megathrust
or by deformation on fore-arc faults (Geist & Scholl, 1994).
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Amajor strike-slip earthquake withmb 6.8 andMS 7.7 (Figure S1 in the supporting information) struck the BFZ
on 17 July 2017 (United States Geological Survey/National Earthquake Information Center (USGS/NEIC) hypo-
center: 54.443°N 168.857°E, 10 km deep at 23:34:13.74 UTC: https://earthquake.usgs.gov/earthquakes/event-
page/us20009x42#executive). This is the largest well-recorded event to strike this region, and it provides an
opportunity to assess the dominant tectonic faulting along the westernmost Aleutians. Eight shallow
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Figure 1. (a) Map showing location of the 17 July 2017 Komandorsky Islands earthquake hypocenter (star), the right-lateral strike-slipW-phase faulting mechanism,
and first day aftershocks (magenta circles) in the westernmost Aleutians, along with GPS horizontal deformation on that day (black arrows) and motion of the Pacific
Plate relative to the North American Plate for model MORVEL (red arrows). The earthquake occurred on the Bering fracture zone, which accommodates motion
between the Komandorsky Sliver and the Bering Plate, as the sliver translates with the Pacific Plate toward Kamchatka. (b) Schematic of the motion of the
Komandorsky Sliver. Arrows show motion relative to the Bering Plate. The shallow dipping megathrust boundary experiences horizontal strike-slip faulting.
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foreshocks with mb ≥ 4 occurred within 12 h before the main shock near the hypocenter (Figure 2b),
commencing with an MW 6.3 strike-slip event (strike 130°, dip 68°, rake �179°). We invert long-period
W-phase data (e.g., Kanamori & Rivera, 2008) from 99 global broadband stations using 235 channels,
obtaining a main shock best double-couple solution with strike 127.9°, dip 84.4°, and rake �172.3°, and
seismic moment M0 = 6.0 × 1020 Nm (MW 7.8). The centroid time shift was 45 s and the centroid location is
54.2°N, 169.8°E, 13.5 km deep, ~70 km southeast from the hypocenter (Figure 2b).

Figures 2a and S2 show seismicity from 1900 to the 2017main shock from the USGS/NEIC catalog and all focal
mechanisms from the Global Centroid Moment Tensor (GCMT) Catalog (http://www.globalcmt.org/
CMTsearch.html). Historical large events struck the region in 1849 and 1858 (e.g., Sykes et al., 1981), so the
region was designated as a seismic gap, and there have been three M ~ 7 events near the BFZ in the last
century. A 1929 event withM ~ 7.8 is located to the southeast, close to the Near Islands (Figure 2a). This event
has similar MS observations to the 2017 earthquake (Figure S1). Right-lateral strike-slip faulting dominates
along the BFZ, but seaward faulting is likely to involve horizontal strike-slip motion on the shallow dipping
megathrust at depths from 26 to 40 km. The latter activity intensifies east of 170°E within the westernmost
rupture area of the 1965 (MW 8.7) Rat Island Earthquake. Along the KS there is no seismicity deeper than
50 km and no high seismic velocity aseismic slabmaterial below 100 km (Levin et al., 2013). The northwestern
end of the Aleutian trench involves underthrusting of the Pacific Plate beneath Kamchatka (Figure 1a) and
collision of the KS with the Sea of Okhotsk plate (e.g., Cook, Fujita, & McMullen, 1986; Savostin,
Verzhbitskaya, & Baranov, 1982).

We characterize the faulting in the 2017 Komandorsky Islands event, comparable in length and seismic
moment to the 1906 San Francisco earthquake on the San Andreas Fault, using teleseismic, tsunami, and geo-
detic observations to evaluate its role in the complex tectonic environment of the westernmost Aleutians.

2. Data and Analysis Procedure

Kinematics of the 17 July 2017 earthquake are first assessed using back projection of short-period P waves
from two large aperture seismic networks in North America and Eurasia to Greenland (Figure S3).
Broadband signals are aligned using multistation correlation (Figures S4 and S5) and filtered to the passband
2.0 to 0.5 s, then back projected to the source region using the procedure of Xu et al. (2009). The results are
summarized in Figure 3. The North America data suggest unilateral rupture with bursts of short-period

Figure 2. (a) Bilateral slip model for the 2017 earthquake and USGS/NEIC catalog seismicity from 1900 to 16 July 2017 (blue circles, scaled proportional to magnitude,
with events larger than M ~ 7 being labeled), along with all moment tensor solutions from the GCMT catalog from 1976 to 16 July 2017 (red-filled compressional
quadrant focal mechanisms). (b) Foreshock seismicity on 17 July 2017 (blue circles) and aftershock seismicity in the first 2 weeks (magenta circles) along with theMW
6.3 foreshock GCMT focal mechanism (cyan focal mechanism). The large focal mechanism is the W-phase moment tensor from this study. The boxes indicate
short-period radiators from the Eurasia-Greenland back projection, and stars indicate radiators from the North American back projection (Figure 3). The slip
distribution is shown in detail in Figure S12. White vectors indicate the relative motion of the Pacific Plate to North America (almost identical to that relative to the
Bering Plate). The large red star indicates the main shock epicenter.
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radiation distributed along the fault strike over ~200 km, with two main concentrations ~50 and ~150 km
southeast of the epicenter. The Eurasia image also features primarily southeastward expansion, but with
minor bilateral radiation extending to northwest of Medny Island. The time-distance plots indicate very
low short-period radiation in the first 15 s, followed by rupture expansion at ~3 km/s. Time-integrated images
of the short-period energy beams are shown in Figure S6 and Movie S1 shows the time sequence.

Using faulting geometries guided by the W-phase solution and kinematic constraints from the back projec-
tions we invert for finite-fault rupture models using global teleseismic broadband P (86 stations) and SH (65
stations) ground displacements. Kinematic least squares inversions of the seismic waves based on Hartzell
and Heaton (1983) and Kikuchi and Kanamori (1992) are performed. Model parameterization details are
provided in Text S1. The seismic inversion results are used to forward model tsunami recordings and GPS
displacements around the north Pacific, iteratively adjusting the kinematic inversion parameters to simulta-
neously fit the seismic, tsunami, and GPS observations (Figures 1, 4, 5, and S11).

We model signals from four northern Pacific deep-water ocean-bottom pressure sensor recordings at NOAA
DART buoys (Figures 5 and S10). The steeply dipping strike-slip faulting of the 2017 event was not strongly
tsunamigenic. The passage of surface waves generated strong oscillations in the DART signals that linger past
the expected arrival of weak tsunami waves. Filtering the tide-corrected signals cannot remove the strong
oscillations due to their high energy level and overlapping frequency band with the tsunami, precluding
direct tsunami waveform inversion. Thus, we compare the recorded tsunami signals with predicted wave-
forms for different seismic models to bound poorly constrained model kinematic parameters. We calculate
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Figure 3. Back projection of short-period (2.0–0.5 s) Pwaves from large aperture networks of broadband stations in (a) North America and (c) Eurasia-Greenland. The
station distributions and filtered signals are shown in Figures S3–S5. The position of peak stack amplitudes in 1 s time intervals are shown for the first 100 s after
the origin time in the map views on the left and in the (b and d) corresponding linear distance-time plots. The large red star is the earthquake epicenter, magenta
stars are large aftershocks within 24 h after the event. The time varying peak stack energy for each network is shown by insets in Figures 3a and 3c. The inferred
rupture is largely unilateral along the arc toward the southeast, with ~3 km/s apparent rupture velocity following a delay of expansion of about 15 s.
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tsunami signals using the nonhydrostatic code NEOWAVE (Yamazaki, Kowalik, & Cheung, 2009, Yamazaki,
Cheung, & Kowalik, 2011) for seafloor motions from the seismic kinematic rupture models. Iterative seismic
inversion and tsunami forward modeling has been extensively applied to enhance resolution of offshore
faulting, as the tsunami waveforms and timing provide valuable sensitivity to the faulting parameters (e.g.,
Bai et al., 2017; Heidarzadeh et al., 2016; Li et al., 2016; Yamazaki et al., 2011), including for deep water
strike-slip faulting events (e.g., Gusman, Satake, & Harada, 2017). We model the northwest Pacific Ocean
and Bering Sea at 1 arc min (1.85 km) resolution with the GEBCO bathymetry from British Oceanographic
Data Center (Weatherall et al., 2015).

For determining GPS static deformations, we use solutions from the GAMIT/GLOBK software (Herring, King, &
McClusky, 2010) for the sites in Russia and the GIPSY software for the sites in Alaska. Details of the processing
are given in Text S1. The offset at PBO station AC60 (Shemya) is estimated by both methods, with consistent
results. Most of the distant GPS observations in Figure 1 are local effects or noise, so we focus on the two
stations closest to the rupture, BRNG, on Bering Island (55.19°N, 165.98°E) and AC60, east of Attu (52.71°N,
174.08°E). Vertical motions are not significant, so only horizontal offsets are considered. BRNG and AC60
are separated by ~600 km, near opposite ends of the 2017 rupture. We choose to iteratively forward model
rather than invert these data, because their inclusion in finite-fault inversions is ill-posed (small slip close to
isolated stations dominates the fitting). We seek a seismic inversion model that predicts these GPS data well
using Okada half-space calculations (Okada, 1985), recognizing that over large distances along strike, there
could be unresolved changes in faulting geometry.

3. Source Process Results

We consider models with either unilateral rupture propagating from the hypocenter toward the southeast, as
suggested by the back projections, or bilateral rupture also including northwestward propagation. The
seismic data and tsunami data can be fit in either case, with lower misfit for the unilateral rupture to the
southeast, but the GPS displacements require slip to the northwest of the hypocenter.

Our initial seismic wave inversion for a unilateral rupture favors about 50 km southeastward placement of the
main slip, with the best overall fit to the teleseismic signals achieved for a strike of 128°, dip of 67°, and
average rake of �172° for the rake-varying inversion. We explore models with steep dip toward the

Figure 4. Comparison of observed (black arrows) and predicted (red arrows) GPS horizontal motions at stations BRNG, AC60, and PETS for the bilateral slip model.
The length of the observed displacement vector at BRNG is 7.4 cm. The grid of slender vectors indicates the spatial variation of predicted horizontal surface motions
on 1/20th scale. The bilateral slip model location is shown in the rectangle, with early aftershock locations indicated by magenta circles. The red star is the adjusted
epicenter. The inset shows the slip distribution, as viewed from the southwest. Vectors indicate average slip and rake of the hanging wall (Komandorsky Sliver)
relative to the footwall (Bering Plate). The color palette indicates the slip magnitude for each subfault. The subfault moment rate functions are shown by the polygons
inside each slip, with total durations of up to 22 s. Isochrones of rupture front location in 10 s intervals are indicated by white dashes.
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northeast (for strike of 302°) as used in the USGS/NEIC finite-fault inversion, but the overall waveform fit is
significantly degraded. The rather high waveform misfit is a consequence of the weak strike-slip radiation
pattern for downgoing P and SH waves. The observed weak energy release in the first 15 s of the rupture
raises the question of whether there was a distinct foreshock or an interval of rupture expansion with low
seismic radiation. The teleseismic data do not tightly constrain the along-strike placement of slip, so we
seek to improve resolution by modeling the tsunami signals and GPS data.

A suite of seismic finite-fault models inverted for rupture expansion velocities, Vr, ranging from 2.0 to 4.0 km/s
and subfault source durations from 22 to 38 s, with dips varying from 62° to 77° for strike of 128° was used to
predict tsunami observations for comparison with the four DART signals. The predicted tsunami arrival time
and peak-to-trough height are compared to the recordings using subjective criteria (judging the agreement
by eye), given the high noise level. The best-fitting unilateral model has a dip of 77°,M0 = 5.24 × 1020 Nm (MW

7.75), Vr = 2.15 km/s, and subfault duration of 22 s (Figures S7–S9). The P and SH data are well fit for this model

Figure 5. Predicted tsunami from the bilateral faulting model. (a) Final seafloor deformation with the red star indicating the epicenter and the dashed line delineat-
ing projection of the faulting model on the seafloor. (b) Predicted tsunami amplitude and DART stations (circles) considered in this study. (c) Comparison of filtered
sea surface recordings (black) at DART stations with predictions (red) along with corresponding amplitude spectra (right). The recorded and predicted time series
were filtered to remove signals shorter than 5 min period and the full 5 h time series were used in the computation of the amplitude spectra. The strike-slip faulting
and position of the stations result in weak tsunami waves, but the timing and height of long-period arrivals provide bounds on the source.
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(Figure S8). The fit to the seismic data improves as the depth extent of the model increases, and this model
has slip locally extending to 33 km depth. Predicted seafloor deformation (Figure S10) shows narrow strips of
uplift and subsidence associated with the large near-surface shearing along the fault as well as a patch of
subsidence from deeper slip of the rupture. The subsidence patch from the deeper slip produces a prominent
leading trough in the side lobes to the east. The tsunami height at DART 21415 is well matched by the best
unilateral model (despite the unstable baseline from the earlier seismic perturbations) and the long period
signals at DART 21414 and 46413 are consistent with the data. The first tsunami amplitude at DART 21416
is overpredicted, but this is found for all of our models. However, this and other unilateral models severely
underpredict the GPS displacement at BRNG and to a lesser extent the displacement at AC60 (Figure S11),
as both stations are far from the slip zone.

Bilateral single-fault models with higher Vr and much longer fault length are required to match the displace-
ment magnitude at BRNG and AC60. We consider planar fault models extending up to 500 km from along
Bering Island to Attu, finding that minor slip near the stations canmatch the displacements. It is not likely that
a single planar fault extends this far. We consider seismic inversion models for a range of strike from 120° to
128°, with rupture velocities from 2.0 to 4.0 km/s. Seismic inversion with Vr = 3 km/s places minor slip offshore
of Bering island, matching the BRNG displacement magnitude, but not its direction, and the same is true for
AC60, with both predictions being rotated clockwise. Shifting the hypocenter slightly, by 17 km at a bearing
of 21° to 54.493°N, 168.957°E, allows good prediction of both GPS observations (Figure 4) for a seismic inver-
sion using a planar fault model 468 km long. This model has patchy slip (Figures 4 and S12–S14), a centroid
time of 57 s, andM0 = 6.17 × 1020 Nm (MW 7.79). It has a large slip patch to the southeast extending to 33 km
depth, as in the unilateral model and a small slip patch at the northwestern end, off Bering Island, near some
early aftershocks and historic activity (Figure 2). The resolution of depth of slip is very limited, and the GPS
data can be fit well by models with slip constrained to the upper 15 km. Allowing deeper slip still provides
the best overall fit, but this is dominated by the deeper slip in the large-slip patch far from the GPS stations.
There is very little slip between the hypocenter and this slip patch off Bering Island, so it may well involve a
distinct early aftershock, and the geometry need not be on a planar fault with rupture to the southeast.
However, parsimoniously, it is possible to successfully predict the GPS data with a seismic inversion. The tsu-
nami comparisons for this model (Figure 5) are slightly degraded from the unilateral model for station 21415
(Figure S10), but the overall waveforms are not incompatible, given the high noise level in the data. Thus, we
present this as a preferred model that accounts for the seismic, GPS, and tsunami data well, with the caveat
that a unilateral southeastward rupture with a northwestern early aftershock or aseismic slip near Bering
Island is equally plausible. The minor hypocenter shift will trade-off with nonplanar faulting assumptions.

4. Fault Model Discussion and Conclusions

For the unilateral and bilateral models the total rupture duration is>80 s, with centroid times>54 s, exceed-
ing the W-phase estimate due to the prolonged tail of the moment rate functions. In both cases, the initial
strong slip occurs in a localized region near 30 km depth, rather than in the crust, and there is slip from 20
to ~30 km deep during the large southeastern crustal sliding. Given the rather young age of the seafloor
in the Komandorsky Basin near the BFZ, this deep slip indicates that this was locally a lithospheric-transecting
rupture on the primary plate boundary between the KS and the Bering Plate, but the resolution of slip depth
is very limited northwest of the hypocenter and could all be less than 15 km deep.

The possibility that the deeper slip actually involved horizontal shearing on the underlying megathrust is
considered, but two-fault models assuming such a geometry do not provide significant trench-parallel slip
on a shallow-dipping plane. The depth of the megathrust is ~40 km below the seafloor at the BFZ, based
on northwestward extrapolation from the Near Islands region of the slab contours for the Slab 1.0 model
(Hayes, Wald, & Johnson, 2012), and using the 18° dip of the megathrust inferred by Kogan et al. (2017).
We vary the depth from 25 to 40 km, but the megathrust radiation pattern is not favorable for accounting
for the deep slip in our single-fault models.

We use the spectrum from the moment rate function for frequencies below 0.05 Hz, along with logarithmic
stacking of propagation-corrected broadband P wave spectra to estimate the source spectra of the unilateral
and bilateral models (Figures S9 and S14). The spectrum is deeply notched at around 0.02 Hz. For the two
models, the estimates of broadband seismic radiated energy computed from the low-frequency moment
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rate function and the average of individual station calculations for P waves are Er = 1.98–2.18 × 1016 J for
frequencies up to 1 Hz. The moment-scaled values are Er/M0 = 3.63–3.94 × 10�5. The Er/M0 values are signifi-
cantly higher than typical value of ~1.1 × 10�5 found for interplate thrust events (e.g., Ye et al., 2016). Static
stress drop is computed using the procedures discussed by Ye et al. (2016), yielding slip-scaled stress drop
estimates of 13.4 to 18 MPa (Figures S14 and S10). These are also high relative to most interplate thrust event
results (~3–4 MPa).

Given that the last large events in the region were in 1849 and 1858, the potential slip deficit accumulated
over the 160 year relative motion at an estimated rate of 5.1 cm/yr (Kogan et al., 2017) is about 8 m, so this
event may have released all accumulated strain between the KS and the Bering Plate in the large slip patch.
The 5.1 cm/yr rate was estimated for a uniform coupling depth of 12 km; the localized region of deeper slip in
our preferred model could slightly increase that estimate, but the resolution of slip depth is too limited to
improve the value. Little is known about the 28 September 1849 and 22 January 1858 events, as discussed
by Sykes et al. (1981), but the 1849 event is thought to have generated a far-field tsunami so it seems unlikely
to be a strike-slip event. The 1858 event is very poorly documented. Kondorskaya and Shebalin (1977) assign
estimates ofM 7.5 ± 0.7 to both events. Uncertainty in the mechanism, size, and slip location of these historic
events limits our ability to evaluate whether the 2017 event is a recurrence event. However, the large size of
the 2017 event, comparable to the 1906 San Francisco earthquake in both moment and length of rupture,
establishes that the Bering Fracture Zone is serving as the likely primary plate boundary in the westernmost
Aleutians, as proposed by Kogan et al. (2017).
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