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Summary 

 

We present a data recovery scheme in Dreamlet 

(Drumbeat-Beamlet, which is a type of physical wavelet) 

domain based on the concept of compressive sensing. The 

data are randomly sampled with sparse samples missing 

50% of the original data. Data recovery is done by a basis 

pursuit decomposition method based on l1-norm 

optimization to search for the most efficient representation 

(least residual with minimum coefficients). Numerical tests 

show that Dreamlet representation is more efficient (with 

less coefficients) and the data recovery process is faster 

(with fewer iterations) than the curvelet method. 

 

Introduction 

 

Compressive sensing (Candes, Romberg and Tao, 2006; 

Donoho, 2006; Tsaig and Donoho, 2006) provides a new 

way of data acquisition design to achieve sparse acquisition 

without sacrifice of the data quality. Randomized sampling 

was used to break the Nyquist sampling law and reduce the 

acquisition cost by sparse acquisition. The aliasing artifacts 

produced by undersampling using standard acquisition are 

transformed into harmless background noise in randomized 

acquisition (see Herrmann, 2010). The keys to the success 

of compressive sensing are to have a highly sparse 

representation of the seismic data and to have an effective 

reconstruction method for the accurate data recovery. It is 

known that the recovery of a signal from severely 

undersampled data can be done by solving a related l1-

regularization problem (Candes, Romberg and Tao, 2006; 

Donoho, 2006; Van den berg and Friedlander, 2008). In 

this study, we will show that Dreamlet representation (Wu 

et al., 2008, 2010; Geng et al.,,2009) is an efficient and 

sparse alternative method for data recovery in compressive 

sensing with respect to other transforms such as curvelet 

transform. This is due to the fact that Dreamlet is a type of 

physical wavelet defined on the observation plane, 

automatically satisfying the wave equation. 

 

Summary on the concept of Compressive sensing 

 

Suppose that we want to recover the original data
Nf 

from the acquired data y f A , 
ny

 
and n N . A is a 

n N matrix, which is called the restriction operator that 

picks the acquired samples from the original data. The data 

set y will be an undersampled data set, may be called data 

by “compressive sensing”. When the original data set (fully 

sampled) f has a sparse representation Nx in certain 

transform domain S  with Tf x S , the relation becomes 

y xB , with TB AS .                             (1) 

where T stands for the inverse transform. To recover x , the 

solution x of equation (1) can be obtained by solving a 
1l  

regularization problem (Candes, Romberg and Tao, 2006; 

Donoho, 2006; Tsaig and Donoho, 2006) 

1
min x subject to 

2
x y  B ,                 (2) 

and the original data can then be recovered by Tf x S . 

Solution x is equivalent to x if equation (2) meets two 

conditions: (a) x is sufficiently sparse, (b) the matrix B

obeys a uniform uncertainty principle (with unit-normed 

columns). That is to say that the undersampling artifacts 
Tz x   L B B I  are incoherent, where parameter is a 

scaling factor so that ( ) 0diag L and I is the identity 

matrix. Condition (b) also shows the importance that the 

artifacts introduced by subsampling the original data are 

not sparse in the transformed domain.  

 

Effective representation of seismic data 

 

To recover the seismic data, we have to find a transform S

which can sparsely represent the seismic data. Several 

works have been done to use Curvelet transform together 

with Compressive sensing to recover the seismic data from 

a random undersampled data (Hennenfent and Herrmann, 

2008; Herrmann et al., 2008; Herrmann, 2010). The 

property of Curvelet transform makes it a good 

representation of the wavefront in the data. In our work, we 

have introduced Dreamlet transform whose atom is in fact a 

type of physical wavelet defined on the observation plane. 

The Dreamlet atom is defined as the tensor product of 

Beamlet atom (space-wavenumber atom) and Drumbeat 

atom (time-frequency atom), which obey the causal relation 

or dispersion relation. In this study, we will use Gabor 

frame as the beamlet and drumbeat atoms: 

                          ( , ) ( ) ( )tt x x
d x t g t b x  


 
                

  
(3) 

where 

     i t

tg t W t t e 



 
         

            (4) 

is the time-frequency atom: “drumbeat” with  W t as a 

Gaussian window function,, and 

 ( ) ( ) i x

x
b x B x x e 


                       (5) 

is the space-wavenumber atom: “beamlet” with ( )B x as a 

Gaussian window function. We see that a dreamlet atom is 
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a time-space windowed (t-x localized) local plane wave-

packet: 

   ( )( , ) ( ) i t i x

t x
d x t W t t B x x e  

 

   
         

  (6) 

where t , x , and  are the local time, location, frequency, 

wavenumber, respectively. The time-space-frequency-

wavenumber atom defined by (6) satisfies the causal 

solution of wave equation. The construction of time-space 

atom in this way can efficiently represent the seismic data, 

resulting in high sparsification of seismic data in dreamlet 

domain. In contrast, noise or artifacts normally do not have 

this property.  

     

Criterion of data recovery 

 

We will use signal-to-reconstruction-error ratio (SNR) to 

show the sparse recovery quality 

2

2

20log
f f

SNR
f


                               (7) 

where f is the data vector, f is the reconstructed data, so f -

f is the reconstruction error, and 

1/2

2

2
( )

i

f f i
 

  
 
 is 

the L2 norm of a vector f.  

 

First we apply this criterion to compare different 

decomposition schemes. The l1-norm optimization scheme 

used in compressive sensing is a decomposition method by 

basis pursuit (Mallat, 1998; Chen et al., 2001; Van den berg 

and Friedlander, 2008).  In the algorithm, the problem is 

solved as a constrained optimization problem, 

1
min , subject to Tx x fS                   (8) 

We will call the solution as searched coefficients, in 

comparison to the analysis coefficients obtained by directly 

applying the Gabor transform to the data and thresholding. 

Using the SEG-EAGE poststack data the comparison is 

shown in Figure 1, where the red line denotes the SNR as a 

function of sparseness ratio /p k N ,  k is the number of 

largest searched coefficients; while the blue line is the SNR  

calculated by k largest analysis coefficients obtained from 

the Gabor transform. It can be seen that with the same 

sparseness ratio, the SNR obtained from searched 

coefficients is always larger than the SNR obtained from 

analysis coefficients. The reason comes from the 

redundancy and nonuniqueness of the frame 

decomposition. It seems that basis pursuit may be able to 

reach the optimum decomposition.  

 

Numerical Examples of data recovery using dreamlets 

 

We know that both Curvelet atom and Dreamlet atom are 

localized atoms, so it is important that the maximum length 

of adjacent missing traces is less than the length of the 

atom in space domain. Hennenfent and Herrmann (2008) 

proposed a jittered undersmapling scheme to control the 

maximum length. In our study, we use random sampling, 

which ensures that the condition (b) can be satisfied, and 

keep the maximum sampling interval less than the atom’s 

length in space domain. 

 

 

Figure 1: SNR for the nonlinear approximations of poststack data . 

The SNR is plotted as a function of sparseness ratio p=k/N, where 

k is the number of coefficients used to reconstruct data and N is the 
size of original data. The red line is from the decomposition by 

basis pursuit; the blue line is from that by Gabor transform. 

 

Figure 2b shows a randomly subsampled synthetic shot 

gather with 50% of the traces missing in the receiver 

directions. Figure 2c shows the recovered data using 

Dreamlet transform with Gabor frames of redundancy of 2 

in both time and space direction. Figure 2d shows the 

recovered data using Curvelet transform. Selected traces 

are plotted in Figure 3 to show the traces of the recovered 

data compared to the original data. It can be seen that both 

methods can recover the missing traces very well, and they 

can keep the existed traces remain correct. As shown in 

Figure 4b, random sampling introduces incoherent noise to 

the original amplitude spectral (Figure 4a) in the temporal 

frequency band, and after recovery, incoherent noises in the 

amplitude spectra of both Dreamlet (Figure 4c) and 

Curvelet methods (Figure 4d) are removed. However, as 

shown in Figure 5, Dreamlet method takes about 60 

iterations to get the solution while Curvelet method takes 

around 400 iterations. The corresponding SNR are 20.99 

dB for Curvelet and 25.88 dB for Dreamlet, respectively. 

Note also that the final number of dreamlet coefficients is 

smaller than that of the curvelets. 

 

The second example is the poststack dataset of the SEG-

EAGE model (Figure 6a). Figure 6b shows the randomly 

undersampled dataset with 50% of the missing traces. The 

recovered data obtain from Dreamlet method and Curvelet 

method are shown in Figure 6c and Figure 6d, respectively, 

and the corresponding amplitude spectra are shown in 

Figure 7. Figure 8 shows eight blocks of the coefficient 

matrix after Dreamlet decomposition. We can see that the 

random sampling behaves as incoherent noise in Dreamlet 

domain just the same as in Fourier spectra (Figure 7b). As 

shown in Figure 9, Dreamlet method takes around 60 
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iterations to get the solution while Curvelet method takes 

around 950 iterations, and the corresponding SRR are 16.3 

dB for Curvelet and 16.6 dB for Dreamlet, respectively. 

 

 

 

Figure 2: Randomly sampled data. (a) One shot gather for a 4 layer 

model, (b) shot gather with half traces missing, (c) Recovered data 
using Dreamlet transform, the Gabor frame has redundancy of 2 

and window interval of 16 for both time and space direction, (d) 

Recovered data using Curvelet transform. 

 

 
 

Figure 3: Comparison between traces of the original data and the 
recovered data in Figure 1, (a), using Dreamlet transform, (b), 

using Curvelet transform. In both figures, blue line stands for the 

original data, green line stands for the randomly undersampled 
data, and red line stands for the recovered data. 

 

 
Figure 4: Fourier domain spectra of data in Figure 1. (a) Original 

data, (b) randomly sampled data, (c) recovered data using 

Dreamlet transform, (d) recovered data using Curvelet transform. 

 

 
Figure 5: l2-norm of the residual (top) and number of coefficients 

(bottom) as a function of iteration number for the data recovery of 
SEG Salt model poststack data set.  

 

Conclusion 

We study the use of Dreamlet for data recovery in seismic 

compressive sensing. We show that the coefficients 

calculated by solving l1-norm optimization problem is 

sparser than the traditional Gabor decomposition, and we 

successfully recover the full data from the randomly 

sampled data. Dreamlet is a physical wavelet (wavelet atom 

satisfying wave equation) and the decomposition renders 

more efficient representation (less coefficients) with fast 

convergence (much less iterations) under the same data 

recovery quality (SNR), compared to Curvelet method. 

This study also shows the possibility to process the seismic 

data directly in the compressed domain after data recovery.  
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Figure 6: Data recovery of randomly missed data. (a) Original poststack dataset of SEG-EAGE model, (b) half traces are missed, (c) recovered 

data using Dreamlet transform. The Gabor frame has redundancy of 2 and window interval of 16 for both time and space directions, (d) recovered 

data using Curvelet transform.
 

 
Figure 7: Fourier domain spectra of data in Figure 5. (a) Original 
data, (b) randomly sampled data, (c) recovered data using 

Dreamlet transform, (d) recovered data using Curvelet transform. 

 

 
Figure 9: Comparison of data recovery by dreamlet and curvelet: 
l2-norm of the residuals and number of coefficients as a function of 

iteration. 

 

 
 

Figure 8: Coefficient matrix after Dreamlet decomposition 
(showing 8 blocks). (a), (b) real and imaginary part of original 

data, (c), (d) real and imaginary part of randomly sampled data, 

(e), (f) real and imaginary part of recovered data using Dreamlet 
transform. 

 

 

DOI  http://dx.doi.org/10.1190/segam2013-0800.1© 2013 SEG
SEG Houston 2013 Annual Meeting Page 3588

Main Menu



http://dx.doi.org/10.1190/segam2013-0800.1 
 
EDITED REFERENCES  
Note: This reference list is a copy-edited version of the reference list submitted by the author. Reference lists for the 2013 
SEG Technical Program Expanded Abstracts have been copy edited so that references provided with the online metadata for 
each paper will achieve a high degree of linking to cited sources that appear on the Web. 
 
REFERENCES  

Candès, E. J., Y. C. Eladar, D. Needell, and P. Randall, 2011, Compressed sensing with coherent and 
redundant dictionaries: Applied and Computational Harmonic Analysis , 31, no. 1, 59–73, 
http://dx.doi.org/10.1016/j.acha.2010.10.002.  

Candès, E. J., J. K. Romberg, and T. Tao, 2006, Stable signal recovery from incomplete and inaccurate 
measurements: Communications on Pure and Applied Mathematics, 59, no. 8, 1207–1223, 
http://dx.doi.org/10.1002/cpa.20124.  

Chen, S. S., D. L. Donoho, and M. A. Saunders, 2001, 2001, Atomic decomposition by basis pursuit : 
SIAM Review, 43, no. 1, 129–159, http://dx.doi.org/10.1137/S003614450037906X.  

Donoho, D. L., 2006, Compressed sensing: IEEE Transactions on Information Theory, 52, no. 4, 1289–
1306, http://dx.doi.org/10.1109/TIT.2006.871582.  

Geng, Y., R. S. Wu, and J. H. Gao, 2009, Dreamlet transform applied to seismic data compression and its 
effects on migration: 79th Annual Meeting, SEG, Expanded Abstracts, 28, 3640–3644.  

Hennenfent, G., and F. J. Herrmann, 2008, Simply denoise: Wavefield reconstruction via jittered 
undersampling: Geophysics, 73, no. 3, V19–V28, http://dx.doi.org/10.1190/1.2841038.  

Herrmann, F. J., 2010, Randomized sampling and sparsity: Getting more information from fewer 
samples: Geophysics, 75, no. 6, WB173–WB187, http://dx.doi.org/10.1190/1.3506147.  

Herrmann, F. J., D. L. Wang, G. Hennenfent, and P. P. Moghaddam, 2008, Curvelet-based seismic data 
processing: A multiscale and nonlinear approach: Geophysics, 73, no. 1, A1–A5, 
http://dx.doi.org/10.1190/1.2799517.  

Mallat, S., 1998, A wavelet tour of signal processing: Academic Press.  

Mosher, C., E. Keskula, S. T. Kaplan, R. G. Keys, C. Li, E. Z. Ata, L. C. Morley, J. D. Brewer, F. D. 
Janiszewski, P. M. Eick, R. A. Olson, and S. Sood, 2012, Compressive seismic imaging: Presented at 
the 74th Annual International Conference and Exhibition, EAGE. 

Rauhut, H., K. Schnass and P. Vandergheynst, 2010, Compressed sensing and redundant dictionaries: 
IEEE Transactions on Information Theory, 54, no. 5, 2219. 

Tsaig, Y., and D. L. Donoho, 2006, Extensions of compressed sensing: Signal Processing, 86, no. 3, 549–
571, http://dx.doi.org/10.1016/j.sigpro.2005.05.029.  

Van den berg, E. and M. P. Friedlander, 2008, Probing the pareto frontier for basis pursuit solutions: 
Journal on Scientific Computing, 31, no. 2, 890–912.  

Wu, R. S., Y. Geng, and B. Wu, 2011, Physical wavelet defined on an observation plane and the 
dreamlet: 81st Annual International Meeting, SEG, Expanded Abstracts, 3835–3839.  

Wu, R. S., B. Wu, and Y. Geng, 2009, Imaging in compressed domain using dreamlets: International 
Geophysical Conference, CPS/SEG, Expanded Abstracts, 57.  

DOI  http://dx.doi.org/10.1190/segam2013-0800.1© 2013 SEG
SEG Houston 2013 Annual Meeting Page 3589

Main Menu



Wu, R. S., B. Y. Wu, and Y. Geng, 2008, Seismic wave propagation and imaging using time-space 
wavelets: 78th Annual Meeting, SEG, Expanded Abstracts, 2983–2987.  

DOI  http://dx.doi.org/10.1190/segam2013-0800.1© 2013 SEG
SEG Houston 2013 Annual Meeting Page 3590

Main Menu




